
Aharonov–Bohm Effect and SQUIDs

Aharonov–Bohm Effect

In classical mechanics, the motion of a charged particle depends only on the electric

and magnetic tension fields E and B; the potentials A0 and A do not have any direct

effect. Also, the motion depends only on the E and B fields along the particle’s trajectory

— the EM fields in some volume of space the particle never goes through do not affect

it at all. But in quantum mechanics, the interference between two trajectories a charged

particle might take depends on the magnetic field between the trajectories, even if along

the trajectories themselves B = 0. This effect was first predicted by Werner Ehrenberg and

Raymond E. Siday in 1949, but their paper was not noticed until the effect was re-discovered

theoretically by David Bohm and Yakir Aharonov in 1959 and then confirmed experimentally

by R. G. Chambers in 1960.

Consider the following idealized experiment: Take a two-slit electron interference setup,

and put a solenoid between the two slits as shown below:

~B

path 1

path
2

The solenoid is thin, densely wound, and very long, so the magnetic field outside the solenoid

is negligible. Inside the solenoid there is a strong B field, but the electrons do not go there;

instead, they fly outside the solenoid along paths 1 and 2. But despite B = 0 along both

paths, the magnetic flux Φ inside the solenoid affects the interference pattern between the

two paths.

The key to the Aharonov–Bohm effect is the vector potential A. Outside the solenoid

B = ∇×A = 0 but A 6= 0 because for any closed loop surrounding the solenoid we have a
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non-zero integral
∮

loop

A(x) · dx =

∫∫

inside the loop
including the solenoid

B(x) · d2Area = F, (1)

the magnetic flux through the solenoid. (Technically, F is the magnetic flux through the

whole loop surrounding the solenoid, but since the B field outside the solenoid is negligible,

the flux F comes from the solenoid itself.)

Locally, a curl-less vector potential is a gradient of some function, so it (the vector

potential A(x)) can be removed by a gauge transform,

A(x) → A′(x) = A(x) + ∇Λ(x) = 0 for some Λ(x), (2)

but globally no single-valued Λ(x) can gauge away the vector potential along both paths

around the solenoid. Instead, we have two separate gauge transforms — the Λ1(x) that

gauges away A(x) along the path #1, and the Λ2(x) that gauges away A(x) along the

path #2 — but they are different transforms, Λ1 6= Λ2. To see how this works, let xg be the

electron gun’s location while xs is some point on the screen. Along path #1 from xg to xs,

dΛ1(x) = −A(x) · dx , (3)

hence

Λ1(xs) − Λ1(xg) =

∫

path#1

dΛ1 = −

∫

path#1

A(x) · dx. (4)

Likewise, along path #2 from the same xg to the same xs,

dΛ2(x) = −A(x) · dx (5)

and hence

Λ2(xs) − Λ2(xg) =

∫

path#1

dΛ1 = −

∫

path#2

A(x) · dx. (6)
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However, the integrals in eq. (4) and (6) are not equal to each other; instead

∫

path#1

A(x) · dx−

∫

path#2

A(x) · dx =

∮

L

A(x) · dx (7)

where L is the closed loop made from path#1 from the electron gun xg to the point xs on

the screen and then path#2 in reverse from A(xs) back to the electron gun xg. By the

Stokes theorem, the loop integral (7) is the magnetic flux through the loop L, and since L

surrounds the solenoid

∫

path#1

A(x) · dx−

∫

path#2

A(x) · dx =

∮

L

A(x) · dx

= F [through L]

= F [through the solenoid].

(8)

Consequently,

(Λ1(xs)− Λ1(xg)) − (Λ2(xs)− Λ2(xg)) = −F 6= 0, (9)

which means we cannot possibly have the same single-valued Λ1(x) ≡ Λ2(x) gauge parameter

for both paths.

The other key to the Aharonov–Bohm effect is the the local phase transform of the

charged particle’s wave function which must accompany the gauge transform of the vector

potential,

Ψ′(x) = exp

(

iq

h̄
Λ(x)

)

Ψ(x)

A′(x) = A(x) − ∇Λ(x)







for the same Λ(x). (10)

Let’s translate this local phase transform of the wave function to the language of the propa-

gation amplitude (AKA the evolution kernel) U(x2,x1) from one point x1 to another point

x2. For example from the electron gun x1 = xg to some particular point x2 = xs on the
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screen. By definition, the propagation amplitude during flight time t is

U(x2,x1)
def
= 〈x2| exp

(

−itĤ/h̄
)

|x1〉 , (11)

=
⇒

Ψ(x2, t2 = t) =

∫

U(x2,x1)Ψ(x1, t1 = 0) d3x1 . (12)

When a gauge transform is accompanied by a local phase transform of the wave function

as in eq. (10), the propagation amplitude also changes it’s phase. Indeed, in order to keep

eq. (12) working in a new gauge, we need

U ′(x2,x1) = exp
(

+i q
h̄
Λ(x2)

)

× U(x2,x1)× exp
(

−i q
h̄
Λ(x1)

)

. (13)

where the first phase factor changes the phase of the Ψ(x2, t2 = t) while the second phase

factor compensates for the changed phase of the Ψ(x1, t1 = 0), thus

Ψ′(x2, t) =

∫

U ′(x2,x1)×Ψ′(x1, 0) d
3xα

=

∫

exp
(

+i q
h̄
Λ(x2)

)

U(x2,x1) exp
(

−i q
h̄
Λ(A1)

)

× exp
(

+i q
h̄
Λ(x1)

)

Ψ(x1, 0) d
3x1

= exp
(

+i q
h̄
Λ(x2)

)

×

∫

U(x2,x1)Ψ(x1, 0) d
3x1

= exp
(

+i q
h̄
Λ(x2)

)

×Ψ(x2, t).
(14)

In particular, suppose B ≡ 0 along the electron’s path from x1 to x2 but the vector

potential does not vanish, A 6= 0. Then locally the vector potential is gauge-equivalent to

zero, meaning there exist some Λ(x) such that

A0(x) = A(x) + ∇Λ(x) = 0, (15)

if not everywhere then at least throughout the neighborhood of the electron’s path. Then

comparing the propagation amplitude UA(x2,x1) in presence of the vector potential with
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the similar amplitude U0(x2,x1) for A0 ≡ 0, we find

U0(x2,x1) = UA(x2,x1)× exp

(

iq

h̄

(

Λ(x2)− Λ(x1)
)

)

= UA(x2,x1)× exp





iq

h̄

x2
∫

x1

∇Λ · dx





= UA(x2,x1)× exp





−iq

h̄

x2
∫

x1

A · dx



 ,

(16)

and therefore

UA(x2,x1) = U0(x2,x1)× exp





iq

h̄

x2
∫

x1

A · dx



 . (17)

Thus, even when the vector potential A does not lead to a magnetic field in the region the

electron travels through, it still manages to change the phase of its propagation amplitude.

Note: if the B field vanishes along the electron’s path but does not vanish somewhere

else, then we can make the gauge-transformed potential A′ = A+∇Λ vanish along the path,

but it would not vanish somewhere else. Consequently, the relation

Λ(x2) − Λ(x1) =

x2
∫

x1

∇Λ · dx = −

x2
∫

x1

A · dx

works only if we integrate A · dx along the electron path rather than some other line. In the

context of eq. (17), this means that

UA(x2,x1) = U0(x2,x1)×







iq

h̄

∫

electron′s path

A · dx






. (18)

In the Aharonov–Bohm experiment, the electron can take two different paths from the

same point xg (the electron gun) to the same point xs on the screen. The interference pattern
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on the screen follows from the net amplitude

Unet(xs,xg) = Upath 1(xs,xg) + Upath 2(xs,xg), (19)

which depends on the phase difference between the amplitudes for each path,

∆ϕ(xs) = phase
(

Upath 1(xs,xg)
)

− phase
(

Upath 2(xs,xg)
)

. (20)

Note that along both paths B = 0 but A 6= 0, which affects the phases of the each amplitude

according to eq. (18), specifically

phase
(

Upath 1
A

(xs,xg)
)

= phase
(

Upath 1
0 (xs,xg)

)

+
q

h̄

∫

path 1

A(x) · dx,

phase
(

Upath 2
A

(xs,xg)
)

= phase
(

Upath 2
0 (xs,xg)

)

+
q

h̄

∫

path 2

A(x) · dx.

(21)

Consequently, the phase difference (20) is affected by the vector potential according to

∆ϕA = ∆ϕ0 +
q

h̄

∫

path 1

A(x) · dx −
q

h̄

∫

path 2

A(x) · dx

= ∆ϕ0 +
q

h̄
× F,

(22)

where F is the magnetic flux through the solenoid, and the second equality follows from

eq. (8).

For different points xs on the screen we have different ∆ϕ0(xs), that’s why we see the

interference pattern on the screen! The magnetic flux term in eq. (22) is the same for all

points on the screen,

∆Aϕ(xs) = ∆0ϕ(xs) +
q

h̄
× F , (23)

so it shifts the whole interference patter along the screen! Thus, even though B = 0 along

both paths an electron might take from the gun to the screen, the quantum interference

between the paths depends on the magnetic flux in the solenoid!
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In the mathematical language, the Aharonov–Bohm effect feels the cohomology of the vector

potential A(x). In a topologically trivial space — like the flat 3D space without any holes —

specifying A(x) modulo gauge transforms A(x) → A(x) + ∇Λ(x) is equivalent to specifying the

magnetic field B(x) = ∇ ×A. However, in spaces with holes the vector potential modulo ∇Λ(x)

for single-valued Λ(x) contains more information than the magnetic field: In addition to B(x) for

x outside the holes, the vector potential also knows the magnetic fluxes through the holes! Indeed,

the integrals along closed loops
∮

loop

A(x) · dx = F (loop) (24)

are gauge-invariant for single-valued Λ(x), and when ∇ × A ≡ 0 everywhere outside the holes,

then the fluxes (24) depend only on the topologies of the loops in question — which hole(s) they

surround and how many times. In math, such integrals are called cohomologies of the one-form

A(x).

In classical mechanics, the motion of a charged particle depends on the magnetic field B in

the region of space through which the particle travels, and it does not care about any cohomologies

of the vector potential A. But in quantum mechanics, the Aharonov–Bohm effect makes quantum

interference sensitive to the cohomologies that the classical mechanics does not see. Specifically,

when the space has some holes through which the particle does not get to travel — like the solenoid

(and a bit of space around it) in the AB experiment — the interference between alternative paths

on different sides of a hole depends on the cohomology of A for that hole — i.e., the magnetic flux

through the hole.

To be precise, the interference between two paths depends on the phase difference (23)

only modulo 2π — changing the phase by 2πn for some integer n would not affect the

interference at all. Consequently, the Aharonov–Bohm effect is un-detectable for

F =
2πh̄

q
× an integer, (25)

or in other words, the AB effect measures only the fractional part of the magnetic flux

through the solenoid in units of

F1 =
2πh̄

|q|
(26)

where q is the electric charge of the particles used in the experiment. In particular, the
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Chambers’s experiment using electron beams was sensitive to the magnetic flux in units of

F e
1 =

2πh̄

e
= 4.135 667 697× 10−15 Wb (Weber = Tesla ×m2). (27)

A more practical version of the Aharonov–Bohm experiment is a SQUID (Superconducting

Quantum Interferometry Device) magnetometer, which is explained in the next section of

these notes. A SQUID uses Cooper pairs instead of single electrons; the electric charge of

such a pair is −2e, so a SQUID measures the fractional part of the magnetic flux in units of

FCp
1 =

2πh̄

2e
= 2.067 833 848× 10−15 Wb. (28)

Note that particles of different charges would measure the fractional part of the magnetic

flux F in different units! Thus, were Nature kind enough to provide us with two particle

species with an irrational charge ratio q1/q2, then measuring the fractional part of the same

flux F in two different units F1 and F2 with irrational F1/F2, we would be able to reconstruct

the whole flux F and not just its fractional part. However, in reality all the electric charges

are integral multiplets of the fundamental charge units e. Consequently, the AB effect using

any existing particle species can measure only the fractional part of the magnetic flux in

universal units

F u
1 = F e

1 =
2πh̄

e
= 4.135 667 697× 10−15 Wb. (29)

Superconducting Quantum Interferometry Devices

Introduction

The superconducting quantum interferometry devices — commonly called the SQUIDs

— are extremely sensitive magnetometers, capable of measuring magnetic field variations by

as little as 10−14 Tesla, or even smaller. The SQUIDs operate on a principle very similar to

the Aharonov-Bohm effect, that’s why these notes include a section on the SQUIDs.

Warning: This section of the notes was written for an extra lecture to the graduate students

who have already been through 3 lectures on superconductivity and Josephson junctions.

For the undergraduate students who read these notes, here is a very quick summary of the

background material necessary to understand the SQUIDs.
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In a superconducting metal, electron-phonon interactions create attractive forces between

electrons with near-opposite momenta near the Fermi surface. At very low temperatures,

such electron pairs form bound states called Cooper pairs, and then these Cooper pairs —

which act as slow bosonic particles — form a Bose–Einstein condensate. This condensate acts

as a superfluid similar to the liquid helium II, but because the Cooper pairs are electrically

charged, this superfluid conducts electric current (called the supercurrent to distinguish it

from the current carried by the un-paired electrons) and is sensitive to the magnetic field.

In a Bose–Einstein condensate, all Cooper pairs are in the same quantum state with

some wavefunction ψpair(x). The Landau–Ginzburg complex scalar field

Ψ(x) =
√

Npairs × ψpair(x) (30)

governs the density and the flow velocity of the condensate. In particular, the condensate

density is simply ns = |Ψ|2, while the velocity leads to the supercurrent

Js = −
2e

Mpair
ne

(

h̄∇ phase(Ψ) + 2eA
)

. (31)

In a bulk superconductor with uniform ns, this equation leads to

∇× J = −
4e2ns
M

B (32)

and hence

(∇2 + κ2)B(x) = 0 for κ2 =
4e2µ0ns
M

. (33)

Thanks to this equation, the magnetic field cannot penetrate a superconductor beyond the

London’s penetration depth (1/κ) ∼ 10 to 100 nm. From a thick superconductor, the

magnetic field is completely expelled beyond a thin surface level; this is the Meissner effect.

In a thick superconducting wire, the current flows only on its surface, so in the middle

of the wire

∇ phase(Ψ) = −
2e

h̄
A. (34)

In particular, in the absence of the magnetic field — and in the gauge where A = 0, — the

phase(Ψ) is constant along the wire.
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Now consider a Josephson junction: Two pieces of superconducting wire separated by

a very thin barrier. The electrons — and hence the Cooper pairs — cannot classically flow

through the barrier, but they can jump through it by quantum tunneling. Consequently, a

week supercurrent can flow thorough the barrier, but it requires different phases φ1 6= φ2 of

the condensate on the two sides of the Josephson junction. Specifically,

I = I0 × sin(φ1 − φ2) (35)

where I0 depends on the junction’s geometry. Experimentally, it’s measured as the strongest

current that can flow through the Josephson junction without resistance, i.e. without causing

a voltage drop across the junction.

Josephson junctions are very interesting devices, but explaining them goes beyond the

scope of these notes. Even explaining the origin of the current formula (35) is beyond the

scope of these notes. Instead, let me explain how a pair of Josephson junctions makes a

SQUID magnetometer.

SQUIDs

The SQUIDs come in many shapes, but the simplest version consists of two similar

Josephson junctions in a single loop of superconducting wire,

JJ#1

JJ#2

(36)

For simplicity, let both Josephson junctions have the same maximal supercurrent I0. Then,

in complete absence of the magnetic field, the maximal supercurrent which can flows through
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the SQUID without generating a voltage is obviously Imax = 2I0. However, in presence of

the weak magnetic field, the maximal zero-voltage current through the SQUID is reduced to

Imax(B) = 2I0 ×

∣

∣

∣

∣

cos
πF

F0

∣

∣

∣

∣

(37)

where F is the flux of the magnetic field through the squid’s loop and F0 is the magnetic

flux quantum in the superconductor,

F0 = FCp
1 =

2πh̄

2e
= 2.067 833 848× 10−15 Wb. (38)

Thanks to the very small value of this magnetic flux quantum, the maximal zero-voltage

current through the SQUID — which can be easily measured — is extremely sensitive to

the tiniest changes of the magnetic field through the SQUID’s loop. And when even higher

sensitivity is needed, one may combine a SQUID with a magnetic amplifier, or with a cas-

cade arrangement of amplifiers; the engineering of magnetic couplings between SQUIDs and

amplifier loops is tricky, but the physics is quite straightforward.

Eq. (37) follows from the Aharonov–Bohm-like interference between the Cooper pairs

— or rather between the Cooper pair condensates — flowing through the two Josephson

junctions. To see how this interference works, consider the phases φ1, . . . , φ4 of the Cooper

pair condensate at 4 points of the SQUID: The two ends (1) and (2) of the top Josephson

junction, and the two ends (3) and (4) of the bottom junction:

1 2

3 4

(39)

Eq. (35) for the current through each junction tells us

Itop = Itop0 × sin(φ1 − φ2),

Ibot = Ibot0 × sin(φ3 − φ4),
(40)

so assuming similar makes (and hence similar I0) of the two junctions, the net current
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through the SQUID is

Inet = Itop + Ibot = I0 ×
(

sin(φ1 − φ2) + sin(φ3 − φ4)
)

. (41)

Now consider the left half of the SQUID, specifically the SC wire going from the left end

(3) of the bottom junction to the left end (1) of the top junction. Assuming this wire is thick

enough, the magnetic field and the supercurrent are expelled by the Meissner effect from the

middle of the wire; instead, the supercurrent flows in a thin layer (of thickness ℓ = London’s

penetration depth) along the wire’s surface. Thus, in the middle of the wire

Js =
−2eh̄ns
Meff

(

∇phase +
2e

h̄
A

)

= 0, (42)

hence

along the wire’s axis : d(phase) = −
2e

h̄
A(x) · dx (43)

and therefore

φ1 − φ3 =
−2e

h̄

1
∫

3

A · dx along the left wire. (44)

The right half of the SQUID — i.e., the SC wire going from the right end (4) of the bottom

junction to the right end (2) of the top junction — also has the supercurrent flowing only

along the wire’s surface, so in the middle of the wire

d(phase) = −
2e

h̄
A(x) · dx (45)

and therefore

φ2 − φ4 =
−2e

h̄

2
∫

4

A · dx along the right wire. (46)

Now let’s take a difference between eqs. (44) and (46) for the two halves of the SQUID:

(φ1 − φ3) − (φ2 − φ4) =
−2e

h̄









∫

left wire

from 3 to 1

A · dx −

∫

right wire

from 4 to 2

A · dx









. (47)

Geometrically, the SQUID has a much larger size then each of the two Josephson junctions,
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so the distances between the two superconductors within each junction — i.e., between (1)

and (2), or between (3) and (4), — are much shorter than the distance between the two

junctions along either side of the SQUID. So assuming a non-singular vector potential near

either junction, we may approximate the integrals in eq. (47) as integrals from the bottom

junction to the top junction along 2 different paths,

1
∫

3

A · dx ≈

topJJ
∫

bottom JJ

A · dx along the left wire,

2
∫

4

A · dx ≈

topJJ
∫

bottom JJ

A · dx along the right wire.

(48)

Hence, the difference between these two integrals is the integral along a closes path which

runs up the left wire from the bottom JJ to the top JJ and then down the right wire from

the top JJ down to the bottom JJ,

1
∫

3

A · dx −

2
∫

4

A · dx =

∮

whole SQUID

A · dx

〈〈 by the Stokes’ theorem 〉〉

= F, the magnetic flux through the SQUID.

(49)

In the context of eq. (47), this formula means

(φ1 − φ3) − (φ2 − φ4) = −
2e

h̄
F = −2π

F

F0
. (50)

Next, let’s re-organize the LHS here in terms of differences φ1 − φ2 and φ3 − φ4 instead

of φ1 − φ3 and φ2 − φ4, thus

(φ1 − φ2) − (φ3 − φ3) = (φ1 − φ3) − (φ2 − φ4) =
−2πF

F0
. (51)

Also, let θ denote the average between φ1 − φ2 and φ3 − φ4,

θ = 1
2(φ1 − φ2) + 1

2(φ3 − φ4); (52)
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then in terms of this θ and the magnetic flux F through the SQUID,

(φ1 − φ2) = θ −
πF

F0
, (φ3 − φ4) = θ +

πF

F0
. (53)

Finally, let’s plug these phase difference across each Josephson junctions into eq. (41) for the

net current through the SQUID:

Inet

I0
= sin(φ1 − φ2) + sin(φ3 − φ4)

= sin

(

θ −
π F

F0

)

+ sin

(

θ +
π F

F0

)

= 2 sin θ × cos
πF

F0
,

(54)

or equivalently

Inet =

(

2I0 cos
πF

F0

)

× sin θ. (55)

Experimentally, we control the magnetic flux F through the SQUID but we have no direct

control over the averaged phase difference θ. Instead, we control the net current through the

SQUID while the θ adjusts itself to whatever it takes to carry the desired current. However,

for any possible value of θ, the sin θ ranges between −1 and +1 and cannot exceed these

limits. Consequently, the net supercurrent through the SQUID varies in the range

−2I0

∣

∣

∣

∣

cos
πF

F0

∣

∣

∣

∣

< Inet < +2I0

∣

∣

∣

∣

cos
πF

F0

∣

∣

∣

∣

(56)

but cannot get any stronger than this in either direction. In other words, the maximal

supercurrent through the SQUID is

Imax = 2I0 ×

∣

∣

∣

∣

cos
πF

F0

∣

∣

∣

∣

. (37)

Quod erat demonstrandum.
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PS: As written, eq. (37) is valid for the relatively weak magnetic fields — strong enough to

affect the interference between the two Josephson junctions, but not so strong to affect the

Josephson junctions themselves. In stronger fields, eq. (37) becomes

Imax = 2I0(B)×

∣

∣

∣

∣

cos
πF

F0

∣

∣

∣

∣

(57)

where I0(B) decreases with the magnetic field. The specific analysis of the I0(B) is quite

beyond the scope of this notes, so let me simply say two things: (1) the details depend on

the precise geometry of the Josephson junctions, and (2)

I0(B) ≈ I0(0) as long as B × (Junction’s area) ≪ F0 . (58)

Note that the junction’s area is much smaller than the area of the SQUID’s loop, so this

condition can hold while at the same time

F [squid] ≫ F0 . (59)
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