
ELECTRIC DIPOLES

A Simple Dipole

A simple electric dipole is pair of opposite point charges +Q and −Q at a short distance

a from each other. The potential generated by such a dipole is obviously

V (R) =
Q

4πǫ0

(
1

d+
−

1

d−

)
(1)

where d± are the distances from the respective charges to the point R. Let’s put the

coordinate origin at the mid-point of the dipole as on the diagram below

d−

d+

−Q +Qa

R

θ

(2)

Working through this geometry, we get

d2± =
(
R −

a

2

)2
= R2 ∓ Ra cos θ +

a2

4
, (3)

d− − d+ =
d2− − d2+
d− + d+

=
2Ra cos θ

d− + d+
, (4)

1

d+
−

1

d−
=

d− − d+

d−d+
=

2Ra cos θ

d−d+(d− + d+)
, (5)

where at the large distances from the dipole, R ≫ a, we may approximate the denominator

here as

d−d+(d− + d+) ≈ 2R3 =⇒
1

d+
−

1

d−
≈

a cos θ

R2
. (6)

Thus, at large distances from the electric dipole, the potential it generates becomes

V (R, θ) =
Q

4πǫ0

a cos θ

R2
, (7)
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or in vector notations

V (R) =
Qa · R̂

4πǫ0 |R|2
=

Qa ·R

4πǫ0 |R|3
. (8)

Note that this potential depends on the charges ±Q and the distance between them only

via their product p = Qa called the dipole moment. Or in vector notations — where a runs

from the −Q charge to the +Q charge, — the dipole moment vector is p = Qa, and the

potential is

V (R) =
p · R̂

4πǫ0 |R|2
=

p ·R

4πǫ0 |R|3
. (9)

Multi–Charge Dipoles

Now consider a system of several point charges Qi located at respective points ri, whose

net charge happens to vanish,

Qnet =
∑

i

Qi = 0. (10)

Let’s look at the net potential generated by this system of charges

V (R) =
1

4πǫ0

∑

i

Qi

|R− ri|
(11)

at distances far away from the system,

|R| ≫ all of the |ri|. (12)

In this limit, we may approximate

|R− ri|
2 = R2 − 2R · r + r2i ≈ R2 ×

(
1 −

2R̂ · ri
R

+ O

(
r2i
R2

))
, (13)

|R− ri| ≈ R×

(
1 −

R̂ · ri
R

+ O

(
r2i
R2

))
, (14)

1

|R− ri|
≈

1

R
×

(
1 +

R̂ · ri
R

+ O

(
r2i
R2

))
, (15)

2



and therefore

V (R) =
1

4πǫ0

∑

i

Qi

R
×

(
1 +

R̂ · ri
R

+ O

(
r2i
R2

))

=
1

4πǫ0

1

R
×
∑

i

Qi +
1

4πǫ0

1

R2
×
∑

i

Qiri · R̂ +
1

4πǫ0

1

R3
×
∑

i

Qi × O(r2i )

=
1

4πǫ0

Qnet

R
+

1

4πǫ0

pnet · R̂

R2
+

1

4πǫ0

O(Qr2)

R3
,

(16)

where in the second term on the bottom line

pnet =
∑

i

Qiri . (17)

For a system of zero net charge, the first term on the bottom line of eq. (16) vanishes, while

the third term becomes much smaller than the second term at the large distances from the

system. Therefore, at large distances from the system the net potential becomes the dipole

potential

V (R) ≈
1

4πǫ0

pnet · R̂

R2
(18)

where pnet is the net electric dipole moment of the system. In particular, for a system of

just two point charges +Q and −Q, eq. (17) for this net dipole moment yields

pnet = (+Q)r+ + (−Q)r− = Q(r+ − r−) = Qa, (19)

which is precisely the dipole moment of a pure dipole.

Finally, for a compact system of continuous charges, eq. (17) generalizes to

pnet =

∫∫∫
ρ(r) r d3vol(r) +

(
similar contributions from

surface and line charges

)
. (20)

Similar to systems of discrete charges, far away from a compact continuous charge system

V (R) =
1

4πǫ0

Qnet

R
+

1

4πǫ0

pnet · R̂

R2
+

1

4πǫ0

O(Qr2)

R3
, (21)
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and if the net charge

Qnet =

∫∫∫
ρ(r) d3vol(r) + surface and line charges (22)

happens to vanish, then the dominant contribution to the potential far away from the system

is due to the net dipole moment,

V (R) ≈
1

4πǫ0

pnet · R̂

R2
. (23)

Example:

Consider a solid ball of radius a filled with some matter with a non-uniform charge density

ρ(r, θ, φ) = kr sin θ sinφ (24)

for some constant k. Let’s find the dipole moment vector of this ball.

In spherical coordinates,

d3vol = r2 dr × sin θ dθ × dφ, (25)

r(r, θ, φ) = (r sin θ cosφ, r sin θ sin φ, r cos θ), (26)

while ρ(r, θ, φ) is as in eq. (24), hence

p =

∫∫∫

ball

d3vol ρ r

=

a∫

0

dr r2
π∫

0

dθ sin θ

2π∫

0

dφ kr sin θ sin φ(r sin θ cosφ, r sin θ sinφ, r cos θ),

hence in components

px =

a∫

0

dr kr4 ×

π∫

0

dθ sin3 θ ×

2π∫

0

dφ sinφ cosφ,

py =

a∫

0

dr kr4 ×

π∫

0

dθ sin3 θ ×

2π∫

0

dφ sin2 φ,

pz =

a∫

0

dr kr4 ×

π∫

0

dθ sin2 θ cos θ ×

2π∫

0

dφ sinφ.

(27)
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Taking the φ integrals, we immediately see that the φ → 2π − φ symmetry kills all the

integrals containing odd powers of sin φ, thus

2π∫

0

dφ sin φ cosφ = 0,

2π∫

0

dφ sin φ = 0, (28)

and hence px = 0 and pz = 0. As to the y component of the dipole moment,

2π∫

0

dφ sin2 φ = π, (29)

hence

py = kπ ×

a∫

0

dr r4 ×

π∫

0

dθ sin3 θ, (30)

where

a∫

0

dr r4 =
a5

5
(31)

while

π∫

0

dθ sin3 θ =

+1∫

−1

d cos θ × (sin2 θ = 1− cos2 θ) = 2 − 2
3

= 4
3
, (32)

thus altogether

py = πk ×
a5

5
×

4

3
=

4π

15
ka5. (33)
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Caveat:

The net dipole moment

pnet =
∑

i

Qiri or pnet =

∫∫∫
d3vol(r) ρ(r)r (34)

involves radius vectors r to the charge locations r from some coordinate origin O, so it seems

to depend on the choice of this coordinate origin O. But actually, for systems of zero net

charge the net dipole moment is origin-independent.

Proof: Let’s change the coordinate origin from O to O′, and let d = OO′ is the vector

from the old origin to the new. This re-coordinatization changes the radius vectors of all the

charges in the system as

ri → r′i = ri − d. (35)

Consequently, the new net dipole moment of the system becomes

p′

net =
∑

i

Qir
′

i =
∑

i

Qi(ri − d) =
∑

i

Qiri − d
∑

i

Qi = pnet − dQnet . (36)

In particular, if Qnet = 0 — and only if Qnet = 0 — then p′
net = pnet. Thus, the net dipole

moment of a system is independent on the choice of the coordinate origin if and only if the

system has zero net charge.

For example, the net dipole moment of a neutral molecule like H2O is well defined

regardless of the coordinate origin, but the net dipole moment of a molecular ion can be

defined only relative to a particular origin O. The usual choice of such origin is the ion’s

center of mass, but sometimes other choices may be more convenient.
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Electric Field of a Dipole

Now that we know the potential

V (R) ≈
1

4πǫ0

p · R̂

|R|2
. (23)

of an electric dipole moment p, let’s calculate the electric field E = −∇V . Let’s work in

the coordinate system where the z axis points in the direction of the dipole moment, or in

spherical coordinates, the Θ = 0 axis points in the direction of p. In these coordinates

V (R,Θ,Φ) =
p

4πǫ0

cosΘ

R2
, (37)

hence

E =
p

4πǫ0

(
2 cosΘ

R3
∇R +

sin θ

R2
∇Θ

)
=

p

4πǫ0

1

R3

(
2 cos θ R̂ + sin θ Θ̂Θ

)
, (38)

where R̂ and Θ̂Θ are unit vectors in the radial and the meridional direction. These unit

vectors themselves depend on Θ and Φ, so let’s translate them to the Cartesian components

as

R̂ = sinΘ cosΦ x̂ + sinΘ sinΦ ŷ + cosΘ ẑ,

Θ̂Θ = cosΘ cosΦ x̂ + cosΘ sinΦ ŷ − sin Θ ẑ.
(39)

Consequently

2 cosΘ R̂+ sinΘ Θ̂Θ = 3 sinΘ cosΘ(cosΦ x̂+ sinΦ ŷ) + (2 cos2Θ−sin2Θ = 3 cos2Θ−1) ẑ,

(40)

and therefore

Ex(R,Θ,Φ) =
p

4πǫ0

3 sinΘ cosΘ cosΦ

R3
,

Ey(R,Θ,Φ) =
p

4πǫ0

3 sinΘ cosΘ sinΦ

R3
,

Ez(R,Θ,Φ) =
p

4πǫ0

3 cos2Θ− 1

R3
.
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In terms of the (X, Y, Z) coordinates

Ex(x, y, z) =
p

4πǫ0

3XZ

(X2 + Y 2 + Z2)5/2
,

Ey(x, y, z) =
p

4πǫ0

3XZ

(X2 + Y 2 + Z2)5/2
,

Ez(x, y, z) =
p

4πǫ0

2Z2 −X2 −X2

(X2 + Y 2 + Z2)5/2
,

(41)

or in vector notations,

E(R) =
3(p · R̂)R̂ − p

4πǫ0 |R|3
. (42)

Note that along the dipole axis the electric field points in the direction of the dipole

moment p, while in the plane ⊥ to the dipole axis the field points in the opposite direction

from the dipole moment. To get a more general picture of the dipole’s electric field, here is

the diagram of the electric field lines in the xz plane:
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Force and Torque on a Dipole

Consider an electric dipole p placed into an external electric field E(r) generated by some

other sources. In general, this electric field exerts a torque on the dipole, and a non-uniform

field also exerts a net force. In this section we shall see how this works.

Let’s start with a simple dipole in a uniform electric field E = const. The field exerts

force F+ = +QE on the charge +Q and exactly opposite force F− = −QE on the other

charge −Q, so the net force on the dipole vanishes,

Fnet = 0 〈〈 in a uniform electric field 〉〉. (43)

However, the two forces act at different places, so together they generate net torque

~τ = r+ × F+ + r− × F− = (r+ − r−)×QE = Q(r+ − r−)× E, (44)

or in terms of the dipole moment p = Q(r+ − r−),

~τ = p× E. (45)

This torque vanishes when the dipole moment p is parallel to the electric field E. Otherwise,

the torque twists the dipole trying to make it align with the field, p → p′ ↑↑ E.

Likewise, take any system of several electric charges — or a continuous charge distri-

bution — with zero net charge. When placed in a uniform electric field, the net force on

this system vanishes while the net torque is exactly as in eq. (45) in terms of the net dipole

moment pnet of the system. Indeed,

Fnet =
∑

i

FonQi
=
∑

i

QiE = QnetE −→ 0 for Qnet = 0, (46)

while

~τnet =
∑

i

ri ×QiE =

(
∑

i

riQi

)
× E = pnet × E. (47)

In a non-uniform electric field, the net force on a dipole generally does not vanish. Indeed,
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for a simple dipole (just 2 charges +Q and −Q),

Fnet = (+Q)E(r+) + (−Q)E(ri) = Q
(
E(r+) − E(r−)

)
6= 0 (in a non-uniform field).

(48)

But suppose the distance a between the two charges of a dipole is rather short while the

electric field varies from place to place on a much longer distance scale. In this case, we

may expand the difference between the fields acting on the two charges in a power series in

a = r+ − r−. Indeed, let r± = r± 1
2
a where r is the center of the dipole; then

E(r±) = E(r) ± (1
2
a · ∇)E

∣∣∣
@r

+ 1
2
(1
2
a · ∇)2E

∣∣∣
@r

± 1
6
(1
2
a · ∇)3E

∣∣∣
@r

+ · · · , (49)

hence the difference

E(r+) − E(r−) = (a · ∇)E
∣∣∣
@r

+ 1
24
(a · ∇)3E

∣∣∣
@r

+ · · · , (50)

and therefore the net force on the dipole

Fnet = Q(a · ∇)E
∣∣∣
@r

+
Q

24
(a · ∇)3E

∣∣∣
@r

+ · · · . (51)

For a physical dipole with a finite distance a between the two charges, we must generally

take into account all the subleading terms in this expansion. But for an ideal dipole —

negligibly small size a → 0 but finite dipole moment p = Q × a due to very large charges

±Q → ±∞, — the subleading terms in eq. (51) become negligible, and only the leading

first term remains important. Indeed, in the limit of a → 0, Q → ∞, while p = Qa remains

finite, the subleading terms in eq. (51) — which are proportional to Q× an = p× an−1 with

n > 1 — become negligible compared to the finite leading term ∝ Qa = p. Thus, the net

force on an ideal dipole is simply

Fnet = (p · ∇)E(R). (52)
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Similarly, consider a dipole comprised of several point charges Qi, or perhaps from a

continuous charge distribution, but all charges are located very close to some central point r0,

all ri = r0 + ∆ri, |∆ri| ≤ a, (53)

while the electric field varies on a much longer distance scale than a. Then

E(ri) = E(r0) + (∆ri · ∇)E
∣∣∣
@r0

+ 1
2
(∆ri · ∇)2E

∣∣∣
@r0

+ · · ·

= E(r0) + (∆ri · ∇)E
∣∣∣
@r0

+ O(a2∇∇E),
(54)

and hence

Fnet =
∑

i

Qi

(
E(ri) = E(r0) + (∆ri · ∇)E

∣∣∣
@r0

+ O(a2∇∇E)

)

=

(
∑

i

Qi

)
E(r0) +

((
∑

i

Qi∆ri

)
· ∇

)
E

∣∣∣
@r0

+ O(Qa2∇∇E)

= QnetE(r0) + (pnet · ∇)E
∣∣∣
@r0

+ O(Qa2∇∇E).

(55)

On the bottom line here, the first term vanishes when the system in question has zero net

charge, while the last term becomes negligibly small in the ideal dipole limit: a → 0 (and

hence all ∆r → 0) while Qi → ∞ such that the net dipole moment stays finite. Thus, in the

ideal dipole limit we get

Fnet = (p · ∇)E(R), (52)

exactly as for a simple 2-charge dipole.

Similar to the net force, the net potential energy of a dipole in the external field obtains

as

Unet = (+Q)V (r+) + (−Q)V (r−), (56)

or for a multi-charge dipole

Unet =
∑

i

QiV (ri). (57)

Again, for compact charge system of small size a and a slowly varying potential V (r), we
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have

V (ri) = V (r0) + (∆ri · ∇)V
∣∣∣
@r0

+ O(a2∇∇V ), (58)

hence

Unet =
∑

i

Qi

(
V (r0) + (∆ri · ∇)V

∣∣∣
@r0

+ O(a2∇∇V )

)

=

(
∑

i

Qi

)
V (r0) +

((
∑

i

Qi∆ri

)
· ∇

)
V
∣∣∣
@r0

+ O(Qa2∇∇V )

= QnetV (r0) + (pnet · ∇)V
∣∣∣
@r0

+ O(Qa2∇∇V )

−→ (pnet · ∇)V
∣∣∣
@r0

for an ideal dipole with Qnet = 0 and a → 0

= −p · E(r0).

(59)

Thus, an ideal dipole with moment p located at point r has net potential energy

U(r,p) = −p · E(r). (60)

The potential energy (60) accounts for the mechanical work of the force (52) when the

dipole is moved around and also for the work of the torque (45) when the dipole is rotated.

Consequently, both the force (52) and the torque (45) are conservative. To see how this

works, consider infinitesimal displacements and rotations of the dipole,

r → r + ~α, p → p + ~ϕ× p (61)

for some infinitesimal vectors ~α and ~ϕ. The work of the force (52) and the torque (45) due

to such combined displacement and rotation is

δW = ~α · F + ~ϕ · ~τ = ~α ·
[
(p · ∇)E(r)

]
+ ~ϕ ·

[
p× E(r)

]
, (62)

so let’s check that the infinitesimal variation of the energy (60) agrees with

δW = −δU(r,p). (63)
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Indeed,

−δU = +δp · E(r) + p ·
[
δE(r) = (δr · ∇)E(r)

]

= (~ϕ× p) ·E(r) + p ·
[
(~α · ∇)E(r)

]
,

(64)

where the first term has form (a× b) · c = c · (a× b) = b · (c× a), thus

1st term = (~ϕ× p) · E(r) = ~ϕ · (p× E(r)) ≡ ~ϕ× τ, (65)

which is precisely the torque term in the work (62). As to the second term in eq. (64),

2nd term = p ·
[
(~α · ∇)E(r)

]
= −p ·

[
(~α · ∇)∇V (r)

]

= −(~α · ∇)(p · ∇)V (r) = −~α ·
[
(p · ∇)∇V (r)

]

= +~α ·
[
(p · ∇)E(r)

]
≡ ~α · F,

(66)

which is precisely the force term in the work (62). And this proves that the force (52) and

the torque (45) on the dipole are indeed conservative and their work is accounted by the

potential energy (60).

To be precise, the torque (45) is the torque relative to the dipole center r. In a non-

uniform electric field, the torque relative to some other point r0 has an extra term due to

the net force (52) on the dipole, thus

~τ net = (r− r0)× Fnet + ~τ relative to r = (r− r0)× (p · ∇)E(r) + p×E(r). (67)

This net torque may also be obtained from the potential energy U— or rather its infinitesimal

variation under simultaneous rotations of the dipole moment vector p and of radius vector

r− r0 of the dipole from the reference point r0. But let me skip the proof of this statement.

Instead, I shall let you work out the consequences of eq. (67) in a couple of homework

problems in set#7. In those problems, you have 2 dipoles exerting forces and torques on each

other. When you calculate the torque on each dipole relative to its center, you’ll find that

both torques are in the same clockwise direction. To resolve this apparent contradiction with

the Law of Angular Momentum Conservation, you have to account for the counterclockwise

torque of the force between the dipoles. Then, when you calculate all torques relative to

the same pivot point, you will add up with a zero net torque and hence conserved angular

momentum.
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