Problem 2.2: Find the electric field \mathbf{E} (both the magnitude and the direction) at distance z above the midpoint between two equal and opposite point charges $\pm q$, at distance d apart from each other.

Problem 2.3: Find the electric field \mathbf{E} directly above one end of a straight line segment of length L that carries a uniform line charge λ.

Check that your formula is consistent with what you would expect for $z \gg L$.

Problem 2.5: Find the electric field at height z directly above the center of a circular loop of radius r carrying uniform line λ.

Problem 2.6: Find the electric field at height z directly above the center of a flat circular disk of radius R that carries a uniform surface charge σ.

What does your formula give in the limit of $R \rightarrow \infty$? Also, check the opposite limit of $z \gg R$.

Problem 1.6: Prove that

$$
\mathbf{A} \times(\mathbf{B} \times \mathbf{C})+\mathbf{B} \times(\mathbf{C} \times \mathbf{A})+\mathbf{C} \times(\mathbf{A} \times \mathbf{B})=\mathbf{0}
$$

Also, under what conditions $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$?

Problem 1.11: Find the gradients of the following functions:

$$
\begin{aligned}
& \text { (a) } f(x, y, z)=x^{2}+y^{3}+z^{4} \\
& \text { (b) } f(x, y, z)=x^{2} y^{3} z^{4} . \\
& \text { (c) } f(x, y, z)=e^{x} \sin (y) \ln (z) .
\end{aligned}
$$

Problem 1.13: Let $\overrightarrow{\mathcal{R}}=\mathbf{r}-\mathbf{R}_{0}$ be the radius vector from a fixed point $\mathbf{R}_{0}=\left(X_{0}, Y_{0}, Z_{0}\right)$ to the point $\mathbf{r}=(x, y, z)$ we follow, and let $\mathcal{R}=|\overrightarrow{\mathcal{R}}|$ be its length, i.e. the distance between the points \mathbf{R}_{0} and \mathbf{r}. Consider the gradients of powers of this distance \mathcal{R} with respect to \mathbf{r} (while the \mathbf{R}_{0} is held fixed). Show that
(a) $\nabla\left(\mathcal{R}^{2}\right)=2 \overrightarrow{\mathcal{R}} ;$
(b) $\nabla(1 / \mathcal{R})=-\overrightarrow{\mathcal{R}} / \mathcal{R}^{3}$;
(c) what is the general formula for the $\nabla\left(\mathcal{R}^{n}\right)$?

Postponed to homework set\#2

Problem 2.15: A thick spherical shell of inner radius a and outer radius b carries a nonuniform (but spherically symmetric) charge density

$$
\rho(r)=\frac{k}{r^{2}} \quad[\text { for } a \leq r \leq b \text { only }] .
$$

Find the electric field in the three regions: (i) $r<a$, (ii) $a<r<b$, (iii) $r>b$. Plot $|\mathbf{E}|$ as a function of the radius r for the case of $b=2 a$.

Problem 2.16: Conside a long coaxial cable comprised of the inner cylinder of radius a and the outer cylindric shell from a to b. The inner cylinder carries a uniform volume charge density ρ. The outer shell has no volume charges but on its outer surface (at $r=b$) it has a uniform surface charge density σ. The sign of σ is opposite to ρ and its magnitude is such
that the whole cable has zero net charge. Here is what the cable's cross-section looks like:

Find the electric field in each of the three regions: (i) $r<a$, inside the inner cylinder; (ii) $a<r<b$, inside the outer shell; (iii) $r>b$, outside the cable. Plot $|\mathbf{E}|$ as a function of the radius r.

Problem 2.18: Two spheres of the same radius R and containing equal and opposite volume charge densities - respectively, $+\rho$ and $-\rho$ - are placed so that they partially overlap. The overlapping region is rendered neutral.

Show that the electric field in the overlapping region is uniform and calculate its value as a function of the vector \mathbf{d} from the positive center to the negative center.

Hint: first, use the Gauss Law to calculate the electric field inside a uniformly charged solid sphere, $c f$. problem 2.12.

