\star Please do not waste your time copying parts of the textbook, the class notes, or the homework solutions, or re-deriving formulae I have derived in class. Simply write down the equations you need and apply them to the problem at hand.

1. [25 points] Electric charge $+Q$ is uniformly distributed along a circular ring of radius R, while a point charge $-Q$ sits at the center of the ring. Consider the electrostatic potential $V(r, \theta, \phi)$ of this charge system and the multipole expansion of this potential at long distances $r \gg R$.
(a) [10 pt] What is the leading multipole of this expansion? That is, what is the lowest- ℓ multipole with a non-zero multipole moment?
(b) [10 pt] Calculate the leading multipole moment. Use the axial symmetry of the system in question.
(c) [5pt] Write down the potential $V(r, \theta, \phi)$ at large $r \gg R$ in the leading multipole approximation.
2. [20 points] A capacitor is made of two coaxial tubes of radii a (the inner tube) and b (the outer tube) and length $L \gg b>a$. The dielectric filling the space between the tubes has non-uniform dielectric constant

$$
\begin{equation*}
\epsilon(s, \phi, z)=\epsilon(s \text { only })=\frac{b^{2}}{s^{2}} \tag{1}
\end{equation*}
$$

The capacitor is charged: the inner tube has free charge $+Q$ while the outer tube has free charge $-Q$.
(a) $[10 \mathrm{pt}]$ Find the electric displacement field \mathbf{D}, the electric tension field \mathbf{E}, and the dielectric polarization \mathbf{P} between the two tubes.
(b) $[10 \mathrm{pt}]$ Find the voltage between the tubes, the capacitance of the capacitor, and the net electrostatic energy of the system.
(\star) For extra credit [10 points]:
Find all the bound charges in the volume and on the surfaces of the dielectric and verify that the net bound charge is zero.
3. [30 points] Consider two infinitely long straight wires that are not parallel to each other. Specifically, wire $\# 1$ with current I_{1} runs along the z axis while wire $\# 2$ with current I_{2} spans

$$
\begin{equation*}
\mathbf{r}=a \hat{\mathbf{x}}+\ell \sin \theta \hat{\mathbf{y}}+\ell \cos \theta \hat{\mathbf{z}}, \quad \text { fixed } a, \theta, \quad \text { variable } \ell \text { from }-\infty \text { to }+\infty \tag{2}
\end{equation*}
$$

(a) [15 pt] Write down the magnetic field $\mathbf{B}_{1}(x, y, z)$ of the first wire and calculate the force $d \mathbf{F}$ it exerts on the element $d \ell$ of the second wire.
(b) $[15 \mathrm{pt}]$ Calculate the net force between the two wires. Note: the net force rather than the force per unit length.
Here are some formulae to help your calculations:

$$
\begin{equation*}
\frac{\hat{\phi}}{s}=\frac{x \hat{\mathbf{y}}-y \hat{\mathbf{x}}}{x^{2}+y^{2}}, \quad \int_{-\infty}^{+\infty} \frac{d \ell}{a^{2}+c^{2} \ell^{2}}=\frac{\pi}{a c}, \quad \int_{-\infty}^{+\infty} \frac{\ell d \ell}{a^{2}+c^{2} \ell^{2}}=0 \tag{3}
\end{equation*}
$$

4. [25 points] Find the magnetic field of a helical current density

$$
\begin{equation*}
\mathbf{J}(x, y, z)=J_{0}(\cos (k z) \hat{\mathbf{x}}+\sin (k z) \hat{\mathbf{y}}) \quad\left\langle\left\langle\text { constant } J_{0}, \text { constant } k\right\rangle\right\rangle \tag{4}
\end{equation*}
$$

flowing through the whole space. Note several symmetries of this current, including invariance under simultaneous translations in z direction and rotations around the z axis.
(a) $[6 \mathrm{pt}]$ Can this current be steady?
(b) [7 pt] Without taking any integrals or solving any differential equations, use the symmetries of the current density (4) to argue that the vector potential should have form

$$
\begin{equation*}
\mathbf{A}(x, y, z)=A_{0}(\cos (k z) \hat{\mathbf{x}}+\sin (k z) \hat{\mathbf{y}}) \tag{5}
\end{equation*}
$$

for some constant A_{0}.
(c) $[7 \mathrm{pt}]$ Check that the vector potential (5) obeys the Poisson equation $\nabla^{2} \mathbf{A}=-\mu_{0} \mathbf{J}$ for the appropriate value of A_{0} and find that value.
(d) [5 pt] Finally, write down the magnetic field \mathbf{B} for the vector potential (5).

