
SEPARATION OF VARIABLES METHOD

There is no universal method for solving the boundary problems for the electrostatic po-

tential V (r). Instead, there are many special methods for particular types of boundaries or

boundary conditions. In particular, the separation of variables method works for boundaries

that have simple geometries (a coordinate = const) in some kind of a coordinate system. For

example:

• A rectangular box of size a× b× c, with boundaries at

x = 0, x = a, y = 0, y = b, z = 0, z = c (1)

in the Cartesian coordinate system (x, y, z).

• A spherical cavity, or a shell between 2 concentric spheres, with boundaries at

r = a and r = b (2)

in the spherical coordinate system (r, θ, φ).

• A cylindrical cavity, with boundaries at

s = R, z = 0, z = L (3)

in the cylindrical coordinate system (s, φ, z).

In general, the separation-of-variables method starts by looking for solutions of the Laplace

equation ∇2V (r) = 0 subject to some of the boundary conditions (but not all of them!) of the

form

V (x, y, z) = f(x)× g(y)× h(z),

or V (r, θ, φ) = f(r)× g(θ)× h(φ),

or V (s, φ, z) = f(s)× g(φ)× h(z),

(4)

where f, g, h are 3 independent functions of the individual coordinates. Eventually, one finds an

infinite series of such solutions, and then one looks at their linear combination that also obeys

the remaining boundary conditions. And that’s all the general description I am going to give to
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this method. Instead, in these notes we shall see may examples how the separation-of-variables

method works in practice for different kinds of boundaries in different coordinate systems, in

2D and in 3D.

Separation of Variables in Cartesian Coordinates

2D Example: Infinite Slot

Let’s start with a 2D example where the potential V (x, y) depends only on the x and y

coordinates but not on the z. Specifically, consider an infinite slot

0 ≤ x ≤ a, 0 ≤ y < ∞, −∞ < z < +∞ (5)

between 2 conducting and grounded walls (where V = 0) at x = 0 and at x = a. There are

no electric charges within the slot, but there are some unknown charges outside the slot, and

also unknown surface charges on the wall. On the other hand, somebody have measured the

potential at the front boundary y = 0 of the slot and found that it depends only on the x

coordinate across the slot but not on the vertical z coordinate,

@y = 0, V (x, 0, z) = known Vb(x only). (6)

Note that the slot’s geometry is invariant under translations in the z direction, z → z + const,

so since the boundary conditions for the potential are also independent on z, then the whole

potential inside the slot should be z-independent. Thus, we have a two-dimensional problem

for V (x, y) inside the yellow band 0 ≤ x ≤ a, 0 ≤ y < +∞ on this diagram:

x

y

V = 0 V = 0

given Vb(x)

V (x, y) ??

V

0

(7)
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Mathematically, we are looking for V (x, y) — for the (x, y) inside the yellow band only — which

obeys the following 4 conditions:

[1] V obeys the 2D Laplace equation,

△V (x, y) =
∂2V

∂x2
+

∂2V

∂y2
= 0; (8)

[2] V vanishes at the left wall and the right wall (since they are conducting and grounded),

for (x = 0 or x = a) and any y, V (x, y) = 0; (9)

[3] V asymptotically approaches zero deep inside the slot,

for y → +∞ and anyx, V → 0; (10)

[4] At the from wall x = 0, the potential has the measured value,

at y = 0, V (x, 0) = given Vb(x). (11)

In the separation-of-variables method, we start by looking at the solutions of the homoge-

neous conditions [1], [2], and [3], — but not [4], — that have a particular simple form

V (x, y) = f(x)× g(y) (12)

for two independent functions f(x) and g(y) of the individual coordinates. In terms of such a

product, the boundary conditions [2] and [3] become

f(x = 0) = f(x = a) = 0, (13)

g(y) → 0 for y → +∞, (14)
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while the Laplace equation [1] becomes

△V (x, y) = f ′′(x)× g(y) + f(x)× g′′(y) = 0. (15)

Dividing the Laplacian on the LHS by the potential V = fg itself, we get

△V

V
=

f ′′(x)

f(x)
+

g′′(y)

g(y)
, (16)

which means we need

f ′′(x)

f(x)
+

g′′(y)

g(y)
= 0 for all x and y. (17)

But on the LHS of this equation, the first term depends only on the x while the second term

depends only on the y, so the only way these two terms may add up to zero for all x and all y

if both terms are constants! Thus, eq. (17) implies

f ′′(x)

f(x)
= −C,

g′′(y)

g(y)
= +C, for the same constant C. (18)

Altogether, the f(x) function should obey

f ′′(x) + Cf(x) = 0, f(x = 0) = f(x = a) = 0, (19)

while the g(y) function obeys

g′′(y) − Cg(y) = 0, g(y) −−−−→
y→+∞

0. (20)

Now let’s solve eq. (19) for the f(x). The differential equation f ′′ + Cf = 0 has general

solutions

f(x) = α cos(kx) + β sin(kx) for positive C = +k2, (21)

f(x) = α cosh(κx) + β sinh(κx) for negative C = −κ2, (22)
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but the boundary condition f(x = 0) = 0 eliminate the cos or cosh terms, thus (up to an overall

constant factor)

f(x) = sin(kx) or f(x) = sinh(κx). (23)

Furthermore, the solutions of the sinh(κx) type do not have any zeros besides x = 0, which

conflicts with the other boundary condition f(x = 0) = a. On the other hand, the solutions

of the sin(kx) type have zeros whenever kx is an integer multiple of π, so f(x = sin(kx) obeys

both boundary conditions provided

k × a = n× π for integer n = 1, 2, 3, . . . .

Altogether, we have a discrete series of solutions

f(x) = sin
nπx

a
for n = 1, 2, 3, . . . (24)

while

C = +
(nπ

a

)2
> 0. (25)

Next, eq. (20) for the g(y) function. For a positive C, the general solution to the differential

equation g′′ − Cg = 0 is

g(y) = α exp(+κx) + β exp(−κx) for κ = +
√
C =

nπ

a
. (26)

However, the asymptotic condition g → 0 for y → +∞ eliminates the terms with the positive

exponent, and we are left with

g(y) = exp
(

−nπy

a

)

(27)

(up to an overall constant factor). Thus altogether, we end up with an infinite but discrete

series of potentials V (x, y) = f(x)× g(y) that obey the conditions [1], [2], and [3], namely

V (x, y) = const× sin
(nπ

a
x
)

× exp
(

−nπ

a
y
)

(28)

for all integer n = 1, 2, 3, . . ..
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Note that the Laplace equation [1] and the V = 0 or V → 0 boundary conditions [2] and

[3] are linear WRT the potential V (x, y). Thus, any linear combination of solutions to [1,2,3] is

also a solution; in particular, any linear combination of the separated-variables solutions (28),

V (x, y) =

∞
∑

n=1

An × sin
(nπ

a
x
)

× exp
(

−nπ

a
y
)

(29)

for arbitrary constant coefficients An is a solution to [1,2,3]. That is, although such linear

combinations generally do not factorize into a product of f(x) and g(y), they do obey the

Laplace equation [1] and the homogeneous boundary conditions [2] and [3]. Moreover, in the

Hilbert space of all solutions to [1,2,3], the separate-variables solutions (28) form a complete

basis, which means that any solution to [1,2,3] can be expanded into a series (29) for some

coefficients An.

Proof for the interested students:

Any function of x on the interval 0 ≤ x ≤ a can be expanded into a Fourier series, and if the function

obeys boundary conditions f(0) = f(a) = 0, then the Fourier series involves only the sines and not the

cosines,

f(x) =

∞
∑

n=1

an sin
nπx

a
for an =

2

a

a
∫

0

f(x)× sin
nπx

a
dx. (30)

Now look at the slice of the slot in question for any fixed y and do a similar Fourier transform of the

potential as a function of x. Doing this for each y results in

V (x, y) =

∞
∑

n=1

gn(y)× sin
nπx

a
(31)

for some y-dependent Fourier coefficients gn(y), specifically

gn(y) =
2

a

a
∫

0

V (x, y)× sin
nπx

a
dx. (32)

For each term in the series (31),

△
(

gn(y)× sin
nπx

a

)

= −(nπ/a)2 sin
nπx

a
× gn(y) + sin

nπx

a
× g′′

n
(y)

=
(

g′′
n
(y) − (nπ/a)2gn(y)

)

× sin
nπx

a
,

(33)

hence

△V (x, y) =
∞
∑

n=1

(

g′′
n
(y) − (nπ/a)2gn(y)

)

× sin
nπx

a
. (34)

This Laplacian must vanish for all x and y, so every term in its Fourier expansion must vanish for all
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y, thus every gn(y) must obey

g′′
n
(y) − (nπ/a)2 × gn(y) = 0. (35)

Solving this equation under asymptotic condition [3] (and hence gn(y) → 0 for y → +∞) gives us

gn(y) = An × exp
(

−nπ

a
y
)

(36)

for some constant overall coefficient An. Plugging this solution into the Fourier series (31), we arrive

at

V (x, y) =
∞
∑

n=1

An × exp
(

−nπ

a
y
)

× sin
nπx

a
, (37)

exactly as in eq. (29). Quod erat demonstrandum.

For general coefficients An, the series (29) obeys the conditions [1,2,3] — the Laplace

equations, and the boundary conditions at the left wall, the right wall, and at y → +∞ — but

not the boundary condition [4] at the y = 0 front of the slot. As we shall see in a moment,

it is that condition [4] that determines the values of the coefficients An. Indeed, at y = 0 the

potential given by a general series (29) becomes

V (x, y = 0) =

∞
∑

n=1

An × exp
(

−nπ

a
(y = 0)

)

× sin
nπx

a
=

∞
∑

n=1

An × sin
nπx

a
(38)

since

exp
(

−nπ

a
× (y = 0)

)

= 1. (39)

On the other hand, at y = 0 we want to have

V (x, y = 0) = given Vb(x), (40)

which in terms of the An means

∞
∑

n=1

An × sin
nπx

a
= given Vb(x). (41)

In other words, the An are the coefficients of the Fourier expansion of the boundary potential

into sine waves, so they obtain as the Fourier integrals

An =
2

a

a
∫

0

Vb(x)× sin
nπx

a
dx. (42)
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Example#1: sine wave.

For a simple example, suppose the Vb(x) measured across the y = 0 front of the slot is a sine

wave, say

Vb(x) = V0 × sin
3πx

a
. (43)

In this case, we do not need to evaluate the integrals (42) to determine the coefficients An.

Instead, we simply compare the front potential (43) to the Fourier series (41):

∞
∑

n=1

An × sin
nπx

a
= should be = V0 × sin

3πx

a
, (44)

which immediately tells us that

A3 = V0, all other An = 0. (45)

Consequently, plugging these coefficients into the series (29), we find that the potential through-

out the slot is

V (x, y) = V0 × sin
3πx

a
× exp

(

−3πx

a

)

. (46)

Example#2: non-zero constant.

For another example, suppose the y = 0 front of the slot is covered by a separate conducting

plate that almost touches the side walls at x = 0 and x = a but is electrically insulated from

them. This front plate is un-grounded and has non-zero constant potential V0, thus

Vb(x) = V0 = const for all 0 < x < a. (47)

In practice, the Vb(x) would be constant for almost all x between 0 and a, but in the tiny gaps

between the front plate and the side walls Vb(x) would change very rapidly between V0 and
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zero,

x

Vb

a

(48)

But to simplify our calculations, let’s assume a flat non-zero potential (47) throughout the front

of the slot. Consequently, performing the Fourier integrals (42), we obtain

An =
2

a

a
∫

0

V0 × sin
nπx

a
dx =

2

a

(

−V0a

nπ
cos

nπx

a

)
∣

∣

∣

∣

a

0

=
2V0
nπ

(

− cos(nπ) + cos(0)
)

=
2V0
nπ

(

−(−1)n + 1
)

=
2V0
nπ

×
{

2 for odd n,

0 for even n,

(49)

and therefore

V (x, y) =
4V0
π

oddn
∑

n=1,3,5,...

1

n
× sin

nπx

a
× exp

(

−nπy

a

)

. (50)

There happens to be an analytic formula for this infinite sum, namely

V (x, y) =
2V0
π

arctan

(

sin(πx/a)

sinh(πy/a)

)

, (51)

but it’s easier to understand the physical behavior of the potential (50) with a 3D plot:
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(52)

And here are the cross-sectional profiles of V (x) at specific fixed y’s, namely (y/a) = 0.01, 0.11,

0.21, 0.31, 0.41, 0.51, 0.61, 0.71, 0.81, and 0.91:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(53)

As you can see, at small y ≪ a — near the front of the slot — the profile looks similar to the

boundary Vb(x), but with slower more rounded rises at x near zero or a, and a bit lower in the

middle. As we go move into the slot — to larger y — we get lower and more rounded profiles

with slower rises at the x = 0 and x = a ends. And for larger y’s — deeper and deeper into

the slot — the profiles start looking just like the sine wave sin(πx/a) with smaller and smaller

amplitudes.

The reason for this behavior becomes clear when we write the potential as the series (50):

All the exponentials exp(−nπy/a) shrink with increasing y, but the exponentials with larger
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n shrink faster that the exponentials with smaller n. Consequently, for large y/a the leading

n = 1 terms completely dominates the potential, and we end up with

V ≈ 4V0
π

× exp(−πy/a)× sin(πx/a) for y >∼ a, (54)

a sine wave with a decreasing amplitude, exactly as we see on the plot (53).

Another 2D Example: Finite Slot Depth

In this example, instead of a slot that’s infinite in the y → +∞ direction we give it a finite

depth b. In other words, the slot has a finite rectangular cross-section a× b (but infinite length

in the z → ±∞ directions). Three out of slot’s four walls are made from a grounded metal —

hence

V (x, y) = 0 for x = 0 or x = a or y = b, (55)

while the fourth wall at y = 0 is non-conducting. As before, there are no charges inside the slot

but there are unknown charges outside it, and when we measure the potential along the y = 0

wall we find that it depends on x but not on z,

V (x, y = 0, z) = Vb(x only). (56)

Consequently, thanks to the translational symmetry in the z direction, we end up with a 2D

problem: Finding V (x, y only) inside the slot. Or rather, finding V (x, y) inside the yellow

rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b on this diagram:

x

y

V = 0 V = 0

V = 0

given Vb(x)

V (x, y) ??

(57)
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As before, we look for a V (x, y) which obeys 4 conditions: [1] the Laplace equation; [2] V = 0

at the left wall and the right wall of the pipe, x = 0 or x = a; [3′] V = 0 at the back wall y = b;

and [4] at the front wall y = 0, the potential agrees with the known boundary potential Vb(x).

Note that the conditions [1], [2], and [4] are exactly the same as for the infinite slot, and only

the condition [3′] is different.

Using the separation-of-variables method, we proceed similarly to the infinite slot example.

That is, we start by looking at the potentials of the form

V (x, y) = f(x)× g(y) (58)

which obey the Laplace equation [1] and the V = 0 boundary conditions [2] and [3′]. As before,

we find that Laplace equation requires

f ′′(x) + C × f(x) = 0, g′′(y) − C × g(y) = 0, for the same constant C. (59)

Moreover, the the boundary conditions for the f(x) are the same as for the infinite slot, hence

similar solutions

f(x) = sin
nπx

a
for an integer n = 1, 2, 3, . . . , C = +(nπ/a)2 > 0. (60)

As to the g(y) function, the general solution to the g′′(y)− C × g(y) = 0 equation is

g(y) = α× e+κy + β × e−κy (61)

for

κ = +
√
C =

nπ

a
. (62)

But now we have a different boundary condition for the g(y): Having V = 0 at the back wall

y = b calls for g(y = b) = 0, and hence

β = −α × e2κb. (63)
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Equivalently, we may write

α, β = ∓A

2
× e∓κb (64)

for some overall constant A, and therefore

g(y) =
A

2

(

−e−κb+κy + e+κb−κy
)

= A× sinh(κ(b− y)). (65)

Altogether, the variable-separated solution of the conditions [1, 2, 3′] for the finite-depth slot is

V (x, y) = A× sin
nπx

a
× sinh

nπ(b− y)

a
(66)

for an integer n = 1, 2, 3, . . ..

Similar to the infinite slot, there is an infinite but a discrete series of such solutions, and

they form a basis in the space of all solutions to the conditions [1, 2, 3′]. Consequently, the most

general solution to these conditions is a linear combination

V (x, y) =
∞
∑

n=1

An × sin
nπx

a
× sinh

nπ(b− y)

a
(67)

for some constant coefficients An. And to find the value of these coefficients, we need to match

the potential (67) at the front wall y = 0 to the known boundary potential Vb(y),

V (x, y = 0) =
∞
∑

n=1

(

An × sinh
nπb

a

)

× sin
nπx

a
= should be = given Vb(x), (68)

In terms of the Fourier transform of Vb(x) into a series of the sine waves, this means that the

An × sinh(nπb/a) should match the coefficients of the nth sine wave, thus

An =
1

sinh(nπb/a)
× 2

a

a
∫

0

Vb(x)× sin
nπx

a
dx. (69)

Or, if the given Vb(x) happens to be a sine wave,

Vb(x) = V0 × sin
mπx

a
(70)
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for an integer m, then

Am =
V0

sinh(mπb/a)
, all other An = 0, (71)

and consequently

V (x, y) = V0 × sin
mπx

a
× sinh(mπ(b− y)/a)

sinh(mπb/a)
(72)

inside the slot.

3D Example: Half-Infinite Rectangular Pipe

For a 3D example of the separation-of-variables method, consider a pipe with a rectangular

a×b cross-section, but unlike a slot from the previous examle, all 4 sides the pipe are conducting

and grounded. On the other hand, the length of this pipe is infinite in only one direction, so in

the obvious (x, y, z) coordinates, the interior of the pipe is limited to

0 < x < a, 0 < y < b, 0 < z < +∞, (73)

and the pipe has a rectangular opening at z = 0. As usual, in this example there are no electric

charges inside the pipe but there unknown charges outside it, and we are given the measured

potential Vb(x, y, z = 0) across the pipe’s opening; our task is to find the potential V (x, y, z)

throughout the pipe’s interior.

Mathematically, we are looking at the potential V (x, y, z) in the region (73) which obeys

the following conditions:

[1] V obeys the 3D Laplace equation, △V (x, y, z) = 0;

[2] V vanishes on the 4 grounded walls of the pipe,

V (x, y, z) = 0 when x = 0, or x = a, or y = 0, or y = b; (74)

[3] deep inside the pipe, the potential asymptotes to zero, V (x, y, z) → 0 for z → +∞;
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[4] at the pipe’s opening z = 0 the potential matches the given boundary potential,

V (x, y, z = 0) = given Vb(x, y). (75)

Using the separation-of-variables method, we start by looking at the potentials of the form

V (x, y, z) = f(x)× g(y)× h(z) (76)

which obeys the Laplace equation [1] and the homogeneous boundary conditions [2] and [3] —

but don’t worry about the inhomogeneous condition [4]. Eventually, we shall find an infinite

series of such solutions, and then we shall look for a linear combination of these solutions that

happens to obey the condition [4].

So let’s start with the Laplace equation. In 3D,

△V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2

〈〈 for V as in eq. (76) 〉〉

= f ′′(x)× g(y)× h(z) + f(x)× g′′(y)× h(z) + f(x)× g(y)× h′′(z),

(77)

hence

△V

V
=

f ′′(x)

f(x)
+

g′′(y)

g(y)
+

h′′(z)

h(z)
, (78)

and we want this expression to vanish for all x, y, z. But the first term here depends only on

the x coordinate, the second — only on the y, and the third — only on the z, so the only way

they can add up to zero for all independent x, y, z is if each one of these terms is a constant.

Thus,

f ′′(x)

f(x)
= C1 = const,

g′′(y)

g(y)
= C2 = const,

h′′(z)

h(z)
= C3 = const,

and C1 + C2 + C3 = 0.

(79)

Next, the homogeneous boundary conditions [2] and [3] for the potential translate to the
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boundary conditions of the f , g, and h functions as

f(x = 0) = f(x = a) = 0,

g(y = 0) = g(y = b) = 0,

h(z) → 0 for z → +∞.

(80)

Altogether, the f(x) function obeys

f ′′(x) − C1 × f(x) = 0, f(0) = f(a) = 0, (81)

exactly as in the previous 2D examples, so it has the same solutions:

f(x) = sin
mπx

a
, C1 = −(mπ/a)2 < 0, (82)

for an integer m = 1, 2, 3, . . .. Likewise, the g(y) function obeys similar conditions

g′′(y) − C2 × g(y) = 0, g(0) = g(b) = 0, (83)

so it also has similar solutions:

g(y) = sin
nπy

b
, C2 = −(nπ/b)2, (84)

for an integer n = 1, 2, 3, . . .. Note: the two integersm and n in eqs. (82) and (84) are completely

independent from each other.

Now let’s pick any particular positive integers m and n. For any choice of these integers,

we have

C3 = −C1 − C2 = +(mπ/a)2 + (nπ/b)2 > 0, (85)

so let’s define

κm,n
def
= +

√

C3 = +
√

(mπ/a)2 + (nπ/b)2 . (86)

In terms of this κm,n, the conditions for the h(z) function become

h′′(z) − κ2m,n × h(z) = 0, h(z) → 0 for z → +∞, (87)
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with the only solution to these conditions being

h(z) = exp
(

−κm,n × z
)

. (88)

Altogether, we see that all the variable-separated solutions to the conditions [1,2,3] for the

potential inside the pipe have form

V (x, y, z) = const× sin
mπx

a
× sin

nπy

b
× exp(−κm,nz) (89)

for positive integers m and n. Similar to the previous 2D examples, we got an infinite but

discrete set of solutions, although in the present 3D case we got a double series labeled by two

independent integers m and n rather than a single series. Hence, a generic linear combinations

of the solutions (89) is a double sum

V (x, y, z) =

∞
∑

m=1

∞
∑

n=1

Am,n × sin
mπx

a
× sin

nπy

b
× exp(−κm,nz) (90)

for some constant coefficients Am,n. Note that the conditions [1,2,3] for the potential are all

linear and homogeneous, so any linear combination of solutions is a solution, which means that

any potential of the form (90) obeys these conditions. Moreover, the solutions (89) form a basis

in the Hilbert space of all the solutions, so any solution can be expanded into a double sum (90)

for some coefficients Am,n.

In particular, the solution for the full problem — including the inhomogeneous boundary

condition at the z = 0 opening of the pipe — must have the form (90) for some coefficients

Am,n, and the values of such coefficients follow from the given boundary potential Vb(x, y) at

z = 0. To find these coefficient, let’s evaluate eq. (90) for z = 0: Since exp(−κm,nz) = 1 for

z = 0 regardless of the value of κm,n, we get

V (x, y, z = 0) =

∞
∑

m=1

∞
∑

n=1

Am,n × sin
mπx

a
× sin

nπy

b
= should be = given Vb(x, y). (91)

The double sum in this formula looks like a double Fourier expansion of V (x, y, z = 0) into sine
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waves of x and of y, so the coefficients Am,n obtain from the corresponding Fourier integrals as

Am,n =
4

ab

a
∫

0

dx

b
∫

0

dy Vb(x, y)× sin
mπx

a
× sin

nπy

b
. (92)

Example:

Suppose the pipe has a square cross-section a× a (thus b = a), and the boundary potential at

the pipe’s opening is a double-sine wave

Vb(x, y) = V0 × sin
3πx

a
× sin

4πy

a
. (93)

In this case, we do not need to perform the integrals (92) to find the Fourier coefficients Am,n.

Instead, we simply compare eq. (93) to the Fourier series (91):

∞
∑

m=1

∞
∑

n=1

Am,n × sin
mπx

a
× sin

nπy

b
= V0 × sin

3πx

a
× sin

4πy

a
, (94)

which immediately tells us that

A3,4 = V0 while all other Am,n = 0. (95)

Consequently, the double sum (90) for the potential inside the pipe has only one non-zero term,

thus

V (x, y, z) = V0 × sin
3πx

a
× sin

4πy

a
× exp(−κ3,4z), (96)

where

κ3,4 =
√

(3π/a)2 + (4π/a)2 = (π/a)×
√

32 + 42 = (π/a)× 5. (97)

Altogether,

V (x, y, z) = V0 × sin
3πx

a
× sin

4πy

a
× exp

(−5πz

a

)

. (98)
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Separation of Variables in Polar Coordinates

The separation-of-variables method can work in different coordinate systems, depending on

the shape of the boundary in the problem in question. In this section, we shall see a couple of

2D examples with circular boundaries, for which the variables are best separated in the polar

coordinates (s, φ) rather than the Cartesian coordinates (x, y).

Cylindrical Cavity

Consider an infinitely long cylindrical cavity of radius R — for example a round pipe with

non-conducting walls. There are no electric charges inside the cavity, but there are some charges

outside it, and maybe also on its surface. We do not know these charges, but we do know the

potential Vb on the cavity’s surface. Moreover, in the cylindrical coordinates (z, φ, z) — where

the cavity’s surface is at s = R, — the boundary potential Vb(φ, z) happens to be depend only

on the φ coordinate but not on the z. Consequently, this system has a translational symmetry

in z direction, so the potential inside the cavity should also be z-independent,

Vb(φ, z) = Vb(φ only) =⇒ V (s, φ, z) = V (s, φ only). (99)

Thus, we got ourselves a 2D problem: Given the potential Vb(φ) on a circle of radius R, find

the potential everywhere inside that circle.

V (s, φ) ??

R

given Vb(φ) (100)

Given the shape of the boundary, it’s best to solve this 2D problem in polar coordinates (s, φ).

However, when working in polar coordinates, one should remember that the φ variable is an

angle and φ + 2π direction in space is exactly the same as φ. Consequently, all physically

measurable quantities — such as the electric potential V (s, φ) — must be periodic functions of
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φ,

V (s, φ+ 2π) = V (s, φ). (101)

Thus, despite not having any boundaries in the φ direction, the periodicity condition (101) acts

as a kind of a boundary condition. Also, the circle’s center at s = 0 is the singular point of

the polar coordinate system, but physically there it’s just another point inside the circle, so the

potential V (s, φ) should remain finite for s → 0.

Altogether, this gives us the following mathematical problem: Find a function V (s, φ) for

0 ≤ s ≤ R, 0 ≤ φ ≤ 2π (102)

which obeys the following conditions:

[1] V (s, φ) obeys the Laplace equation in polar coordinates,

△V (s, φ) =
∂2V

∂s2
+

1

s

∂V

∂s
+

1

s2
∂2V

∂φ2
= 0; (103)

[2] V (s, φ) is periodic in φ with period 2π; in terms of φ limited to the 0 ≤ φ ≤ 2π interval,

this means

V (s, φ = 2π) = V (s, φ = 0) and
∂V

∂φ
(s, φ = 2π) =

∂V

∂φ
(s, φ = 0); (104)

[3] At the center s = 0, the potential V (s, φ) should be finite and φ-independent;

[4] At the outer boundary s = R, the potential should have the given boundary value,

V (s = R, φ) = given Vb(φ). (105)

In the separation-of-variables method, we start by looking at solutions to conditions [1,2,3]
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(but not [4]) in the form

V (s, φ) = f(s)× g(φ). (106)

We start with the Laplace equation (103), which for potentials of the form (106) yields

△V = f ′′(s)× g(φ) +
f ′(s)

s
× g(φ) +

f(s)

s2
× g′′(φ) = should be = 0. (107)

Let’s multiply this equation by s2 and divide by V = fg, which gives us

s2

V
×△V =

s2f ′′(s)

f(s)
+

sf ′(s)

f(s)
+

g′′(φ)

g(φ)
= should be = 0. (108)

In this formula, the first two terms depend only on s while the third term depends only on φ, so

the only way they can add up to zero for all s and all φ is if both combinations are constants:

s2f ′′(s)

f(s)
+

sf ′(s)

f(s)
= +C = const,

g′′(φ)

g(φ)
= −C = const,

for the same constant C.

(109)

Next, consider the g equation g′′(φ)+Cg(φ) = 0 for a constant C. In general, the solutions

to this equation are

for C = +m2 ≥ 0, g(φ) = A cos(mφ) + B sin(mφ), (110)

for C = −µ2 ≤ 0, g(φ) = A cosh(µφ) + B sinh(µφ). (111)

However, we want not just any solution but a periodic solution g(φ+2π) = g(φ), which requires

trigonometric rather than hyperbolic sine and cosine, hence C = +m2 > 0. Moreover, a period

compatible with 2π requires integer m = 0, 1, 2, 3, 4, . . .. Thus,

C = +m2 for m = 0, 1, 2, 3, . . . and g(φ) = A cos(mφ) + B sin(mφ). (112)

Now consider the f equation for C = +m2,

s2 × f ′′(s) + s× f ′(s) − m2 × f(s) = 0. (113)

This equation is linear in f and homogeneous in s, so let’s look for solutions of the form
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f(s) = sα for some power α. Indeed, plugging such f into the equation yields

0 = s2 × α(α− 1)sα−2 + s× αsα−1 − m2 × sα = sα ×
(

α2 − m2
)

, (114)

which is satisfied whenever

α2 − m2 = 0 =⇒ α = ±m. (115)

For m 6= 0 there are two distinct roots, hence two independent solutions to eq. (113), and since

this equation is linear, its general solution is a linear combination

f(s) = D × s+m + E × s−m (116)

for some constants D and E.

For m = 0 the roots (115) coincide so we get only one solution rather than two. However,

for m = 0, eq.(113) reduces to

sf ′′(s) + f ′(s) = 0, (117)

which is a first-order equation for the f ′(s), and its general solution is

f ′(s) =
E

s
=⇒ f(s) = D + E × ln(s) (118)

for some constants D and E.

In any case, we want more than a general solution to the equation (113), we want the

solution which obeys condition [3], namely no singularity at the cylinder’s axis s = 0. This

condition rules out negative powers of s for m 6= 0 or the logarithm for m = 0, which leaves us

with

f(s) = const× s+m = const′ ×
( s

R

)m
. (119)

Altogether, we have an infinite series of solutions to conditions [1,2,3], namely

V0(s, φ) = A0 = const for m = 0, and

Vm(s, φ) = A cos(mφ)× (s/R)m + B sin(mφ)× (s/R)m for integer m = 1, 2, 3, . . . .
(120)
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Consequently, a general solution to [1,2,3] is a linear combination

V (s, φ) = A0 +
∞
∑

m=1

(

Am cos(mφ) + Bm sin(mφ)
)

×
( s

R

)m
(121)

for some constant coefficients Am and Bm. Or in terms of complex exponentials e±imφ with

complex coefficients,

V (s, φ) = A0 +
∞
∑

m=1

(

1
2(Am + iBm)e+imφ + 1

2(Am − iBm)e−imφ
)

×
( s

R

)m

=
+∞
∑

m=−∞

Cm × eimφ ×
( s

R

)|m|
, (122)

where C0 = A0, C+m = 1
2(Am + iBm), C−m = 1

2(Am − iBm) = C∗
+m. (123)

Finally, the coefficients Cm follows from the boundary condition [4] on the surface of the

cylinder:

@s = R, V (R, φ) =

+∞
∑

m=−∞

Cm × eimφ = given Vb(φ), (124)

so the Cm obtain from expanding the periodic Vb(φ) into the Fourier series. Hence, the reverse

Fourier transform gives

Cm =
1

2π

2π
∫

0

Vb(φ)× e−imφ dφ. (125)

Or if you prefer the expansion (121) into real sine and cosine waves,

Bm =
2

2π

2π
∫

0

Vb(φ) sin(mφ) dφ,

Am =
2

2π

2π
∫

0

Vb(φ) cos(mφ) dφ,

except A0 =
1

2π

2π
∫

0

Vb(φ) dφ.

(126)
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Example: Square Wave.

Suppose the cylinder’s surface is spit into 2 conducting halves (but insulated from each other)

with potentials ±V0. Thus, as a function of φ, the boundary potential looks like a square wave,

Vb(φ) =

{

+V0 for 0 < φ < π,

−V0 for π < φ < 2π.
φ

Vb

(127)

This boundary potential is antisymmetric: Vb(−φ) = −Vb(φ), or rather

Vb(2π − φ) = −Vb(φ), (128)

so its Fourier transform has no cosine waves but only sine waves. Thus all Am = 0, while

Bm =
V0
π

π
∫

0

sin(mφ) dφ − V0
π

2π
∫

π

sin(mφ) dφ

=
V0
mπ

[

cos(0) − 2 cos(mπ) + cos(2mπ)
]

=
V0
mπ

×
{

4 for odd m,

0 for even m.

(129)

Consequently, the potential inside the cylinder is given by the series

V (s, φ) =
4V0
π

oddm
∑

m=1,3,5,...

sin(mφ)

m
×
( s

R

)m
, (130)

which can be analytically summed up to

V (r, s) =
2V0
π

× arctan

(

2Rs

R2 − s2
× sin φ

)

. (131)

To illustrate this potential graphically, let me plot it as a function of φ for s = 0.1R, 0.3R,
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s = 0.5R, s = 0.7R, s = 0.9R, and s = R:

φ

V

(132)

Note: the closer we are to the axis, the smaller is the amplitude of the V (φ) curve, and the curve

looks more and more like the sine wave. Mathematically, this happens because the larger–m

terms in the series (130) carry larger powers of (s/R), so for small s/R ratios they become

small compared to the leading m = 1 term. Consequently, close to the axis where (s/R) ≪ 1

we may approximate the whole series by its leading term (s/R) sin(φ).

Outside A Cylinder

Now consider a slightly different problem: instead of a cylindrical cavity, we have a charged

cylinder surrounded by empty space. We don’t know the charges inside the cylinder or on

its surface, all we know is the boundary potential Vb(φ) which happens to be independent of

z coordinate, and we need to find out the potential V (s, φ) outside the cylinder (which we

presume to be also z independent).

Proceeding similarly to the previous example, we start by looking for V (s, φ) = f(s)× g(φ)

which obeys the Laplace equation and is periodic in φ. This leads us to

C = +m2 for m = 0, 1, 2, 3, . . . and g(φ) = A cos(mφ) + B sin(mφ). (112)

and hence

f(s) =







D + E × ln(s) for m = 0,

D × s+|m| + E × s−|m| for m 6= 0.
(133)
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However, this time we are concerned with the asymptotic behavior for s → ∞ rather than

the axis of the cylinder at s = 0. Specifically, we want the potential to go to zero — or at

least to stay finite — for s → ∞, and this rules out the positive powers of s as well as ln(s).

Consequently, outside of the cylinder

f(s) = const× s−|m| (134)

instead of f(s) ∝ s+|m| inside the cylinder.

Combining the s and φ dependence, we find

V (s, φ) = A0 +

∞
∑

m=1

(

Am cos(mφ) + Bm sin(mφ)
)

×
(

R

s

)m

(135)

for some constants Am and Bm, or in terms of complex exponentials e±imφ,

V (s, φ) =
+∞
∑

m=−∞

Cm × eimφ ×
(

R

s

)|m|

. (136)

Finally, the complex coefficients Cm = C∗
−m here — or if you prefer, the real coefficients Am

and Bm, — obtain from expanding the boundary potential into the Fourier series, precisely as

in eqs. (125) or (126).
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Separation of Variables in Spherical Coordinates

Problems with Axial Symmetry

Now consider a 3D problem: Find the potential V (r, θ, φ) inside a spherical cavity — or

outside a sphere — when we are given the potential Vb(θ, φ) on the spherical surface. For

simplicity, let’s focus on potentials with axial symmetry:

Vb(θ, φ) = Vb(θ only) =⇒ V (r, θ, φ) = V (r, θ only). (137)

Mathematically, we seek the potential which:

[1] Obeys the 3D Laplace equation.

[2] Is single-valued, non-singular, and smooth as a function of θ.

[3] Is well behaved at the center r → 0 if we work inside the sphere, or asymptotes to zero for

r → ∞ if we work outside the sphere.

[4] Has given boundary values at the sphere’s surface, V (r = R, θ) = Vb(θ).

Using the separation of variables method, we first seek to satisfy the conditions [1,2,3] for a

potential of the form

V (r, θ) = f(r)× g(θ), (138)

find an infinite series of solutions, then look for a linear combination which satisfies the condi-

tion [4].

Let’s start with the Laplace equation in the spherical coordinates:

△V (r, θ, φ) =
∂2V

∂r2
+

2

r
× ∂V

∂r

+
1

r2
× ∂2V

∂θ2
+

1

r2 tan θ
× ∂V

∂θ

+
1

r2 sin2 θ
× ∂2V

∂φ2
.

(139)

For the potential of the form (138), the Laplacian becomes

△V =

(

f ′′(r) +
2f ′(r)

r

)

× g(θ) +
f(r)

r2
×

(

g′′(θ) +
g′(θ)

tan θ

)

, (140)
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hence

r2

V
×△V =

(

r2f ′′(r)

f(r)
+

2rf(r)′

f(r)

)

+

(

g′′(θ)

g(θ)
+

g′(θ)

g(θ) tan θ

)

, (141)

where the two terms inside the first () depend only on radius r while the two terms inside the

second () depend only on the latitude θ. Consequently, the Laplace equation △V ≡ 0 for all

r, θ requires

r2 × f ′′(r)

f(r)
+ 2r × f ′(r)

f(r)
= +C, (142)

g′′(θ)

g(θ)
+

1

tan θ
× g′(θ)

g(θ)
= −C, (143)

for the same constant C. (144)

Next, consider the g equation (143), or equivalently

g′′(θ) +
g′(θ)

tan θ
+ C × g(θ) = 0. (145)

Let’s change the independent variable here from θ to x = cos θ, thus

g(θ) = P (cos θ) (146)

for some function P (x). Consequently, by the chain rule for derivatives,

dg

dθ
= − sin θ × dP

dx

∣

∣

∣

∣

x=cos θ

(147)

and hence

d2g

dθ2
= − cos θ × dP

dx

∣

∣

∣

∣

x=cos θ

+ sin2 θ × d2P

dx2

∣

∣

∣

∣

x=cos θ

, (148)

so plugging these derivatives into eq. (145) we arrive at

0 = − cos θ × dP

dx
+ sin2 θ × d2P

dx2
+

− sin θ

tan θ
× dP

dx
+ C × P

= (1− cos2 θ)× d2P

dx2
− (cos θ + cos θ)× dP

dx
+ C × P.

(149)
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In terms of x = cos θ, this is the Legendre equation for the P (x),

(1− x2)× P ′′(x) − 2x× P ′(x) + C × P (x) = 0. (150)

Without explaining how to solve the Legendre equation, let me briefly describe its solutions.

Because the coefficient (1−x2) of the leading derivative term in this equation vanishes for x = ±1

— which correspond to the two poles of the sphere, θ = 0 and θ = π, — a general solution

of the Legendre equation is singular at these two points. Moreover, for generic values of the

constant C, all solutions are singular at x = +1, or at x = −1, or at both points. However, for

special values of C — specifically

C = ℓ(ℓ+ 1), for integer ℓ = 0, 1, 2, 3, . . . , (151)

— there is a solution which is regular at all x, namely the Legendre polynomial of degree ℓ,

Pℓ(x) =
1

2ℓ ℓ!

dℓ

dxℓ
(x2 − 1)ℓ. (152)

The overall coefficient here is chosen such that at x = +1 all these polynomials become Pℓ(1) =

1, while for x = −1 Pℓ(−1) = (−1)ℓ. Here are a few explicit Legendre polynomials for small ℓ:

P0(x) = 1,

P1(x) = x,

P2(x) = 3
2x

2 − 1
2 ,

P3(x) = 5
2x

3 − 3
2x,

P4(x) = 35
8 x

4 − 15
4 x

2 + 3
8 ,

P5(x) = 63
8 x

5 − 35
4 x

3 + 15
8 x,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(153)

The Legendre polynomial are ‘orthogonal’ to each other when we use
∫ +1
−1 dx as the measure,

+1
∫

−1

Pℓ(x)× Pℓ′(x) =







0 for any ℓ′ 6= ℓ,

2

2ℓ+ 1
for ℓ′ = ℓ.

(154)

Consequently, any analytic function of x ranging from −1 to +1 may be expanded in a series
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of Legendre polynomials,

any H(x) =

∞
∑

ℓ=0

Hℓ × Pℓ(x) for Hℓ =
2ℓ+ 1

2

+1
∫

−1

H(x)× Pℓ(x) dx. (155)

Going back to eq. (145) for the g(θ), we see that it has solutions that are regular at both

poles θ = 0 and θ = π only for C = ℓ(ℓ+ 1), ℓ = 0, 1, 2, . . ., namely

g(θ) = Pℓ(cos θ). (156)

For these values of the constant C, eq. (142) for the f(r) becomes

r2 × f ′′(r) + 2r × f ′(r) − ℓ(ℓ+ 1)× f(r) = 0. (157)

This equation is linear in f and is homogeneous in r, so let’s look for the solutions of the form

f(r) = rα for some constant power α. Indeed plugging such an f into the equation (157) yields

0 = r2 × α(α− 1)rα−2 + 2r × αrα−1 − ℓ(ℓ+ 1)× rα

= rα ×
(

α(α− 1) + 2α− ℓ(ℓ+ 1)
)

(158)

so the differential equation is satisfied whenever

α(α− 1) + 2α = α(α + 1) = ℓ(ℓ+ 1) =⇒ α = ℓ or α = −(ℓ + 1). (159)

Thus, the general solution to eq. (142) has form

f(r) = A× rℓ +
B

rℓ+1
(160)

for some constant coefficients A and B.

The specific solution we need depends on whether we are looking for the potential inside

the sphere or outside the sphere.
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• For the inside-the-sphere solution we want the potential to be non-singular at the center,

which rules out negative powers of the radius r. In terms of eq. (160) this means B = 0

and hence

f(r) = const× rℓ = const′ ×
( r

R

)ℓ
. (161)

• For the outside-the-sphere solution, we want the potential to asymptote to zero for r → ∞,

which rules out positive powers of the radius. In terms of eq. (160) this means A = 0 and

hence

f(r) =
const

rℓ+1
= const′ ×

(

R

r

)ℓ+1

. (162)

Altogether, the general solution to the conditions [1,2,3] is given by the series:

Inside the sphere,

V (r, θ) =

∞
∑

ℓ=0

Cℓ × Pℓ(cos θ)×
( r

R

)ℓ
. (163)

Outside the sphere,

V (r, θ) =

∞
∑

ℓ=0

Cℓ × Pℓ(cos θ)×
(

R

r

)ℓ+1

. (164)

In both cases the coefficients Cℓ are constants, whose values are determined by the remaining

condition [4], namely the boundary condition at the sphere’s surface:

V (r = R, θ) =

∞
∑

ℓ=0

Cℓ × Pℓ(cos θ)× 1 = given Vb(θ). (165)

To solve this condition for the Cℓ, we use the orthogonality of the Legendre polynomials and

hence eq. (155): Treat the given boundary potential Vb(θ) as a function of x = cos θ, then

Vb(x) =
∞
∑

ℓ=0

Cℓ × Pℓ(x) for Cℓ =
2ℓ+ 1

2

+1
∫

−1

Vb(x)× Pℓ(x) dx. (166)

Or in terms of θ rather than x = cos θ,

Cℓ =
2ℓ+ 1

2

π
∫

0

Vb(θ)× Pℓ(cos θ)× sin θ dθ. (167)
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Example: Vb(θ) = V0 × cos(3θ).

For boundary potentials which are manifest polynomials of cos θ — or can be brought to such

form using simple trigonometry, such as in our example

Vb = V0 cos(3θ) = 4V0 cos
3 θ − 3V0 cos θ, (168)

— we do not need to evaluate the integrals (167) to find the coefficients Cℓ. Instead, we may

simply expand the polynomial Vb(cos θ) as a finite sum — rather than an infinite series — of

Legendre polynomials using their explicit forms (153). Indeed, power by power in x = cos θ we

have

x = P1(x), x2 = 1
3

(

2P2(x) + P0(x)
)

, x3 = 1
5

(

2P3(x) + 3P1(x)
)

,

x4 = 1
35

(

8P4(x) + 20P2(x) + 7P0(x)
)

, . . .
(169)

Consequently, for our example we have

Vb(cos θ) = 4V0×
2P3(cos θ) + 3P1(cos θ)

5
− 3V0×P1(cos θ) = 8

5V0×P3(cos θ)−3
5V0×P1(cos θ),

(170)

hence

C1 = −3
5V0, C3 = +8

5V0, all other Cℓ = 0. (171)

Therefore, inside the sphere the potential is

V (r, θ) = −3
5V0 × P1(cos θ)×

( r

R

)

+ 8
5V0 × P3(cos θ)×

( r

R

)3
, (172)

while outside the sphere

V (r, θ) = −3
5V0 × P1(cos θ)×

(

R

r

)2

+ 8
5V0 × P3(cos θ)×

(

R

r

)4

. (173)
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Charges on the Spherical Surface

Consider a thin spherical shell with some surface charge density σ(θ, φ) — and no other

charges inside or outside the shell. For simplicity, assume axial symmetry, thus σ(θ only). Let’s

find out the potential both inside and outside the spherical shell due to this charge density.

Surface charge densities make for discontinuous electric fields, but the potential V is con-

tinuous across the charged surface. Thus, while in the present situation we do not know the

boundary potential Vb(θ) on the spherical surface, we do know its the same potential both

immediately inside and immediately outside the surface. Consequently, the potential V (r, θ)

inside and outside the sphere is given by the equations (163) and (164) for the same coefficients

Cℓ, whatever they are. In other words,

∀ r, θ : V (r, θ) =

∞
∑

ℓ=0

Cℓ × Pℓ(cos θ)×



















( r

R

)ℓ
for r < R,

(

R

r

)ℓ+1

for r > R.

(174)

Next, consider the radial component of the electric field:

Er = −∂V (r, θ)

∂r
=

∞
∑

ℓ=0

Cℓ × Pℓ(cos θ)×



















−ℓ
rℓ−1

Rℓ
for r < R,

+(ℓ+ 1)
Rℓ+1

rℓ+2
for r > R.

(175)

Unlike the potential, this radial electric field is discontinuous across the sphere. Indeed, near

the sphere

Er(r ≈ R) =

∞
∑

ℓ=0

Cℓ × Pℓ(cos θ)×















−ℓ

R
just inside the sphere,

+(ℓ+ 1)

R
just outside the sphere,

(176)

with discontinuity

disc(Er) = Er(r = R + ǫ) − Er(r = R− ǫ) =

∞
∑

ℓ=0

Cℓ × Pℓ(cos θ)×
2ℓ+ 1

R
. (177)
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Physically, this discontinuity is caused by the surface charge density on the sphere,

disc(Er) =
σ

ǫ0
. (178)

Consequently, the charge density as a function of θ is related to the coefficients Cℓ of the

potential (174) according to

σ(θ) = ǫ0 disc(Er(θ)) =
ǫ0
R

×
∞
∑

ℓ=0

(2ℓ+ 1)× Cℓ × Pℓ(cos θ). (179)

We may also reverse this relation according to eq. (155) to get the coefficients Cℓ from the σ(θ),

Cℓ =
R

2ǫ0
×

π
∫

0

σ(θ)× Pℓ(cos θ)× sin θ dθ. (180)

For example, suppose the sphere is neutral on the whole, but has a quadrupole charge

density

σ(θ) = σ0 ×
3 cos2 θ − 1

2
= σ0 × P2(cos θ). (181)

Comparing this angular dependence with eq. (179), we immediately see that the only non-zero

coefficient Cℓ is the C2, specifically

C2 =
Rσ0
5ǫ0

. (182)

Consequently, inside the sphere the potential is

V (r, θ) =
σ0
5ǫ0

× r2

R
× P2(cos θ), (183)

while outside the sphere

V (r, θ) =
σ0
5ǫ0

× R4

r3
× P2(cos θ). (184)
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Metal Sphere in External Electric Field

Now consider another example: a metal sphere in uniform external electric field. That is,

far away from the sphere the electric field asymptotes to the uniform E = Eẑ, hence

for r → ∞, V → −Ez = −Er × cos θ = −Er × P1(cos θ). (185)

The sphere itself is neutral, so without loss of generality we may assume it has zero potential.

Let’s find the potential outside the sphere for these boundary conditions. Since we no

longer have V → 0 at infinity, the radial function fℓ(r) could be a general combination of two

solutions,

fℓ(r) = Aℓ × rℓ +
Bℓ

rℓ+1
(186)

with Aℓ 6= 0. On the other hand, asking for V = 0 all over the sphere requires fℓ(r = R) = 0

and hence

Bℓ = −R2ℓ+1 × Aℓ . (187)

Consequently, the general form of the potential outside the sphere looks like

V (r, θ) =

∞
∑

ℓ=0

Aℓ × Pℓ(cos θ)×
(

rℓ − R2ℓ+1

rℓ+1

)

(188)

for some coefficients Aℓ.

To find these coefficients, we compare the asymptotic behavior of the potential (188) for

large r,

V −→
∞
∑

ℓ=0

Aℓ × Pℓ(cos θ)× rℓ (189)

to the desired asymptotics (185). This comparison immediately tells us that

A1 = −E, all other Aℓ = 0, (190)

hence

V (r, θ) = −E

(

r − R3

r2

)

× cos θ, (191)
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or in Cartesian coordinates

V (x, y, z) = −Ez + ER3 × z

(x2 + y2 + z2)3/2
(192)

The first term here is due to the external electric field, while the second term is due to induced

charges on the sphere’s surface.

Taking the gradient of the potential (192), we obtain the net electric field,

E(x, y, z) = Eẑ + ER3

(

3z

r4
r̂ − 1

r3
ẑ

)

= Eẑ +
ER3

r3

(

2
z

r
ẑ − x

r
x̂ − y

r
ŷ
)

. (193)

Here is the picture of the field lines for this electric field:

Finally, the surface charge density σ(θ) on the metal sphere follows from the radial electric

field immediately outside the metal:

Er(θ) = −∂V

∂r
= +E cos θ × ∂

∂r

(

r − R3

r2

)

= E cos θ ×
(

1 +
2R3

r3

)

−−−→
r→R

E cos θ × 3,

(194)

hence

σ(θ) = ǫ0Er(r → R) = 3ǫ0E cos θ. (195)
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Spherical Harmonics for Problems Without Axial Symmetry

Finally, consider a more general 3D problem with a spherical boundary, but with a given

boundary potential Vb(θ, φ) (or a given boundary charge σ(θ, φ)) which is not axially symmet-

ric but depends on both angular coordinates θ and φ. In this case, instead of the Legendre

polynomials Pℓ(cos θ) we should use the spherical harmonics Yℓ,m(θ, φ). You will study these

spherical harmonics in some detail in the Quantum Mechanics class in the context of angular

momentum quantization, hydrogen atom wavefunctions, etc., etc. For the moment, let me skip

the details and simply summarize a few key properties of the spherical harmonics.

• The spherical harmonics are solutions to the partial differential equation

∂2Y

∂θ2
+

1

tan θ

∂Y

∂θ
+

1

sin2 θ

∂2Y

∂φ2
= −ℓ(ℓ+ 1)Y (196)

subject to the conditions of single-valuedness and no singularities anywhere on the sphere.

In terms of the θ and φ coordinates this means periodicity in φ and no singularities at

the poles θ = 0 and θ = π.

• The solutions exist only for integer ℓ = 0, 1, 2, 3, . . .. For each such ℓ, there are 2ℓ + 1

independent solutions Yℓ,m(θ, φ) labeled by another integer m running from −ℓ to +ℓ.

• The Yℓ,m have form Yℓ,m(θ, φ) = (const) × Pℓ(m)(cos θ) × exp(imφ) where the Pℓ(m)(x)

are called the associate Legendre polynomials, even though some of them are not really

polynomials. Instead, Pℓ(m)(cos θ) = (sin θ)|m| × degree (ℓ− |m|) polynomial of cos θ.

• For m 6= 0 the spherical harmonics are complex; by convention, Y ∗
ℓ,m = (−1)mYℓ,−m.

Also, all the harmonics with m 6= 0 vanish at the poles θ = 0 and θ = π.

• The only harmonics which do not vanish at the poles are the Yℓ,0. These harmonics

are independent of φ and are proportional to Pℓ(cos θ), but have different normalization:

Yℓ,0(θ, \φ) =
√

(2ℓ+ 1)/4π × Pℓ(cos θ).

• The spherical harmonics are orthogonal to each other and normalized to 1. That is

∫∫

Y ∗
ℓ,m(θ, φ) Yℓ′,m′(θ, φ) d2Ω(θ, φ) = δℓ,ℓ′δm,m′ . (197)

• Any smooth, single-valued function g(θ, φ) can be decomposed into a series of spherical
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harmonics,

g(θ, φ) =
∞
∑

ℓ=0

+ℓ
∑

m=−ℓ

Cℓ,mYℓ,m(θ, φ) for Cℓ,m =

∫∫

g(θ, φ) Y ∗
ℓ,m(θ, φ) d

2Ω(θ, φ). (198)

• Let F (r, θ, φ) = rℓ×Yℓ,m(θ, φ). Then in Cartesian coordinates, F (x, y, z) is a homogeneous

polynomial in x, y, z of degree ℓ. Moreover, F (x, y, z) obeys the Laplace equation.

Now let’s apply the spherical harmonics to the electrostatic potential problems with spher-

ical boundaries but with φ-dependent boundary conditions. Mathematically, we look for a

function V (r, θ, φ) which:

[1] Obeys the Laplace equation inside or outside some sphere of radius R.

[2] Is smooth and single-valued everywhere in the volume in question; in particular, V is peri-

odic in φ and has no singularities at θ = 0 or θ = π.

[3] For the inside of a spherical cavity, V is smooth at r → 0; for the outside or a sphere, V

asymptotes to zero for r → ∞.

[4] On the spherical boundary the potential has given form, V (R, θ, φ) = Vb(θ, φ).

Using the separation of variables method, we start by looking for solutions to conditions

[1,2,3] (but not [4]) of the form

V (r, θ, φ) = f(r)× g(θ, φ); (199)

note incomplete separation of variables at this stage. In light of eq. (139) for the Laplace

operator in spherical coordinates,

r2

V
×∆V =

r2f ′′

f
+

2rf ′

f
+

1

g

(

∂2g

∂θ2
+

1

tan θ

∂g

∂θ
+

1

sin2 θ

∂2g

∂φ2

)

, (200)

so to get a solution to the Laplace equation ∆V = 0 we need

∂2g

∂θ2
+

1

tan θ

∂g

∂θ
+

1

sin2 θ

∂2g

∂φ2
+ C × g = 0, (201)

r2
d2f

dr2
+ 2r

df

dr
− C × f = 0 (202)
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for the same constant C. By inspection, eq. (201) is the same as eq. (196), so we know that

the solutions exist only for C = ℓ(ℓ + 1) for integer ℓ = 0, 1, 2, 3, . . ., and the solutions are the

spherical harmonics g(θ, φ) = Yℓ,m(θ, φ) or their linear combinations. Thus,

V (r, θ.φ) = f(r)× Yℓ,m(θ, φ) (203)

where the radial function f(r) obeys

r2f ′′(r) + 2rf ′(r) − ℓ(ℓ+ 1)f(r) = 0. (204)

As we saw earlier in these notes, the solutions to this equation have form

f(r) = A× rℓ +
B

rℓ+1
(205)

for some constants A and B. For a spherical cavity, regularity of the solution at the center

requires B = 0 while for an outside of a sphere the asymptotic condition at ∞ requires A = 0.

However, for a space between two spherical boundaries, we may have both A 6= 0 and B 6= 0.

Altogether, the general solution to conditions [1,2,3] for the inside of a spherical cavity has

form

V (r, θ, φ) =

∞
∑

ℓ=0

+ℓ
∑

m=−ℓ

Cℓ,m ×
( r

R

)ℓ
× Yℓ,m(θ, φ), (206)

while the general solution for the outside of a sphere looks like

V (r, θ, φ) =
∞
∑

ℓ=0

+ℓ
∑

m=−ℓ

Cℓ,m ×
(

R

r

)ℓ+1

× Yℓ,m(θ, φ). (207)

In both cases, the constant coefficients Cℓ,m follow from the boundary condition [4] at the

spherical surface:

V (R, θ, φ) =
∞
∑

ℓ=0

+ℓ
∑

m=−ℓ

Cℓ,m × Yℓ,m(θ, φ) = given Vb(θ, φ). (208)

Since the spherical harmonics form a complete orthonormal basis for the functions of the spher-

ical angles (θ, φ), we may use eq. (198) to obtain the coefficients Cℓ,m for any given boundary
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potential Vb(θ, φ) on the spherical surface, namely

Cℓ,m =

∫∫

Vb(θ, φ)× Y ∗
ℓ,m(θ, φ) d

2Ω(θ, φ). (209)

A Few Words About Cylindrical Coordinates

There are many 3D boundary problems that can be solved by separating the variables in

the cylindrical coordinates (s, φ, z). For example, consider a round pipe of length that’s infinite

in only one direction z → +∞. The pipe has grounded conducting surface at s = R, and

a circular opening at z = 0. There are no charges inside the pipe, we know the boundary

potential Vn(s, φ) across the opening, and we want to find the potential inside the pipe.

Unfortunately, for the separated-variables potentials of the form

V (s, φ, z) = f(s)× g(φ)× h(z) (210)

with non-constant h(z), the differential equation for the radial function f(s) is the Bessel

equation and its solutions are Bessel functions. While there is nothing wrong with the Bessel

functions as such, they are unfamiliar to many undergraduate students, and explaining them

is beyond the scope of this Classical Electrodynamics class.

Thus, I am going to skip over separation of variables in cylindrical coordinates. The students

who are interested in this subject can read about in in J. D. Jackson’s graduate-level textbook

“Classical Electrodynamics”, §3.7–8 (of the third edition).
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