
PHY–352 K. Solutions for problem set #1.

Problem 2.2:

First, let me write down the Coulomb law in the vector form. For a point charge Q located

at R, the electric field at some other point r = R+∆r is

E(r) =
Q

4πǫ0 |∆r|2 ∆̂r =
Q

4πǫ0

∆r

|∆r|3 =
Q

4πǫ0

r−R

|r−R|3 . (1)

Note the third power of the distance in the denominator of the last expression here, since

one factor of the distance cancels the length of the non-unit vector in the numerator.

For multiple charges Qi located at Ri, the net field at some probe point r is the vector

sum

E(r) =
1

4πǫ0

∑

i

Qi
r−Ri

|r−Ri|3
. (2)

For the problem at hand, we have two charges: Q1 = +q at R1 = (−d
2
, 0, 0) and Q2 = −q

at R2 = (+d
2 , 0, 0), while the point where we measure the electric field is at r = (0, 0, z).

Thus, the ∆r vectors for the two charges are

∆r1 = r − R1 = (+d
2
, 0, z) and ∆r2 = r − R2 = (−d

2
, 0, z), (3)

which have the same length

|∆r1| = |∆r2| = R =
√

(d/2)2 + z2 . (4)

Consequently, the net electric field at point r is

E(r) =
+q

4πǫ0

∆r1

|∆r1|3
+

−q

4πǫ0

∆r2

|∆r2|3
=

q

4πǫ0

1

R3

(
∆r1 − ∆r2

)
, (5)

where

∆r1 − ∆r2 = (r−R1) − (r−R2) = R2 − R1 = (d, 0, 0) ≡ d x̂. (6)
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Altogether, the electric field is

E(r) =
q

4πǫ0

d

R3
x̂. (7)

Its magnitude is

E =
q

4πǫ0

d

R3
=

q

4πǫ0

d
(
z2 + (d/2)2

)3/2 , (8)

while the direction is parallel to the x axis.

Problem 2.3:

On figure 2.7, the charged rod lies along x axis, spanning points

R = (x, 0, 0) for 0 ≤ x ≤ L, (9)

while we measure the electric field at point P with coordinates rP = (0, 0, z), hence the

vector from a charged point to P is

∆r = rP − R = (−x, 0, z) of length |∆r| =
√

x2 + z2 . (10)

The rod has uniform charge density λ, thus dQ = λdx. Hence, integrating over the rod’s

length, we obtain the electric field at point P as

E(rP ) =
1

4πǫ0

L∫

0

dx λ
∆r

|∆r|3 =
λ

4πǫ0

L∫

0

dx
(−x, 0, z)

(x2 + z2)3/2
, (11)

or in components

Ex = − λ

4πǫ0

L∫

0

x dx

(x2 + z2)3/2
,

Ey = 0,

Ez = +
λ

4πǫ0

L∫

0

z dx

(x2 + z2)3/2
.

(12)

Note that unlike the example I did in class on Tuesday, the x component of the electric field

does not vanish since the probe is closer to the left end of the rod than to the right end.
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Now let’s do the integrals. For the Ex component, we have

x dx

(x2 + z2)3/2
=

d(x2)

2(x2 + z2)3/2
=

d(x2 + z2)

2(x2 + z2)3/2
= d

( −1√
x2 + z2

)
, (13)

hence

L∫

0

x dx

(x2 + z2)3/2
= −

1/
√
L2+z2∫

1/|z|

d

(
1√

x2 + z2

)
=

1

|z| − 1√
z2 + L2

(14)

and therefore

Ex(P ) = − λ

4πǫ0
×
(

1

|z| − 1√
z2 + L2

)
. (15)

As to the z component, we change the integration variable from x to α = arctan(x/|z|)
=⇒ x = |z| tanα, thus

z dx

(x2 + z2)3/2
= z × |z| dα

cos2 α
× cos3 α

|z|3 =
1

z
× cosα dα =

1

z
× d sinα.

The integration range 0 ≤ x ≤ L translates to α running from 0 to αmax = arctan(l/|z|) and
hence sinα running from 0 to

sinαmax =
tanαmax√

1 + tan2 αmax

=
L/|z|√

1 + (L/|z|)2
=

L√
L2 + z2

. (16)

Consequently,

L∫

0

z dx

(x2 + z2)3/2
=

1

z

L/
√
L2+z2∫

0

d sinα =
1

z
× L√

L2 + z2
(17)

and therefore

Ez(P ) =
λ

4πǫ0
× 1

z
× L√

L2 + z2
. (18)

Finally, let’s check the z ≫ L limit. In that limit
√
L2 + z2 ≈ |z|, hence

Ez(P ) ≈ λ

4πǫ0
× L

z |z| =
λL = Qnet

4πǫ0
× sign(z)

|z|2 , (19)

which is basically the Coulomb field of a point-like charge at distance |z| from the point P .
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At the same time

1

|z| − 1√
z2 + L2

≈ L2

2|z|3 , (20)

hence

Ex ≈ − λ

4πǫ0
× L2

|z|3 ≪ Ez ,

which is appropriate for a distant almost-pointlike charge located directly above or below

the point P .

Problem 2.5:

The charged ring — which we take to lie in the (x, y) plane, with its center at the coordinate

origin — is symmetric with respect to rotations around the z axis. Since the point P lies

right on that symmetry axis, the electric field at that point cannot have any horizontal Ex

or Ey components; only the Ez component is allowed by the symmetry.

To find the Ez component, we integrate over the charged ring:

Ez(P ) =
1

4πǫ0

∫

ring

∆z

|∆r|3 λ dℓ , (21)

where for every point of the ring

∆z = z and |∆r| =
√
z2 +R2

ring . (22)

Note that both the vertical distance ∆z from P to the ring and the overall distance |∆r|
remain constant for all points of the ring. The charge density λ of the ring is also constant all

along the ring, so all the factors under the integral (21) are constants! This makes evaluating

the integral extremely easy:

∫

ring

∆z

|∆r|3 λ dℓ =
∆z

|∆r|3 × λ× Lring =
z

(z2 +R2)3/2
× λ× 2πR, (23)

and hence

Ez(P ) =
λ× 2πR

4πǫ0
× z

(z2 +R2)3/2
. (24)
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Problem 2.6:

Similar to the previous problem, the charged disk is symmetric with respect to rotations of

the z axis, while the point P lies on that axis. Consequently, the electric field at that point

P does not have Ex or Ey components but only the Ez component, which obtains as

Ez(P ) =
1

4πǫ0

∫∫

disk

∆z

|∆r|3 dQ . (25)

To perform this integral, let’s use polar coordinates for the charged disk:

x = r × cosφ, y = r × sinφ, (26)

0 ≤ r ≤ R, 0 ≤ φ ≤ 2π, (27)

d2A = dr × r dφ =⇒ dQ = σ × r dr × dφ. (28)

The vertical distance from P to any point of the disk is the same ∆z ≡ z, but the overall

distance depends on the radial coordinate of the disk:

|∆r| =
√
z2 + r2 . (29)

Finally, the surface charge density σ of the disk is uniform.

Plugging all these data into the integral (25), we obtain

Ez(P ) =
1

4πǫ0

R∫

0

dr

2π∫

0

dφ
z × σ × r

(r2 + z2)3/2
=

z × σ

4πǫ0
×

R∫

0

r dr

(r2 + z2)3/2
×

2π∫

0

dφ , (30)

where in the second expression we have moved all constant factors in front of the integrals.

In particular, nothing in the integrand depends on the polar angle φ, so the
∫
dφ integral is

quite trivial,

2π∫

0

dφ = 2π. (31)

5



This leaves us with

Ez(P ) =
2π × z × σ

4πǫ0
×

R∫

0

r dr

(r2 + z2)3/2
, (32)

where

r dr

(r2 + z2)3/2
=

d(r2)

2(r2 + z2)3/2
=

d(r2 + z2)

2(r2 + z2)3/2
= d

( −1√
r2 + z2

)
. (33)

Consequently

R∫

0

r dr

(r2 + z2)3/2
=

r=R∫

r=0

d

( −1√
r2 + z2

)
=

−1√
R2 + z2

− −1√
0 + z2

=
1

|z| −
1√

R2 + z2
, (34)

and therefore

Ez(P ) =
z × σ

4πǫ0
×
(

1

|z| − 1√
R2 + z2

)
=

σ × sign(z)

2ǫ0
×

(
1 − |z|√

R2 + z2

)
. (35)

Or in vector notations,

E(P ) =
σ

2ǫ0
×

(
1 − |z|√

R2 + z2

)
× sign(z) ẑ. (36)

Finally, consider the extreme limits R ≫ z and R ≪ z. In the R ≫ z limit,

(
1 − |z|√

R2 + z2

)
≈ 1, (37)

and the electric field becomes

E(P ) ≈ σ

2ǫ0
sign(z) ẑ. (38)

This is the electric field of the infinite charged sheet — as we have seen in Thursday class

from the Gauss Law. Physically, for R ≫ z the disk viewed from the point P looks very

large, so it makes sense to approximate it as an infinite charged sheet.
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On the other hand, for |z| ≫ R, the disk viewed from the point P looks tiny, almost

point like, so its electric field should be approximated by the Coulomb field of a point charge

Qnet = σ × πR2. (39)

And indeed, in the R ≪ |z| limit

(
1 − |z|√

R2 + z2

)
≈ R2

2z2
, (40)

hence

E(P ) ≈ σ

2ǫ0
× R2

2z2
× sign(z) ẑ =

σ × πR2

4πǫ0 × z2
× sign(z) ẑ , (41)

which is precisely the Coulomb field of a point charge measured at a point P directly above

or below the charge.

Problems 2.15, 2.16, 2.18 are postponed to the next homework set.

Problem 1.6:

Note: the relation

A× (B×C) + B× (C×A) + C× (A×B) = 0 for any vectors A,B,C (42)

is an example of a Jacobi identity. There are similar Jacobi identities for antisymmetric

“products” of entities more complicated than vectors in 3 space dimensions. For example,

the Poisson brackets of classical mechanics

for A(q1, . . . , qn, p1, . . . , pn) and B(q1, . . . , qn, p1, . . . , pn),

[A,B]Poisson
def
=

n∑

i=1

(
∂A

∂qi
× ∂B

∂pi
− ∂A

∂pi
× ∂B

∂qi

)
(43)

and the commutator brackets of quantum mechanics

for linear operators Â and B̂, [Â, B̂]commutator
def
= ÂB̂ − B̂Â
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obey the Jacobi identitity

for any Â, B̂, Ĉ, [Â, [B̂, Ĉ]] + [B̂, [Ĉ, Â]] + [Ĉ, [Â, B̂]] = 0. (44)

And there are many more examples, some of them quite useful for Physics.

But let’s focus on the cross products of 3D vectors and prove the Jacobi identity (42).

The simplest proof follows from the BAC−CAB rule (textbook eq. (1.17) on page 8) for

the double vector product:

A× (B×C) = B(A ·C) − C(A ·B). (45)

Let’s apply the same rule to the cyclically permuted vectors A,B,C:

B× (C×A) = C(B ·A) − A(B ·C), (46)

C× (A×B) = A(C ·B) − B(C ·A). (47)

Now let’s add up eqs. (45), (46), and (47):

A× (B×C) + B× (C×A) + C× (A×B)

= B(A ·C)− C(A ·B)

+ C(B ·A) − A(B ·C)

+ A(C ·B) − B(C ·A)

= 0.

(48)

On the left hand side here we have the LHS of the Jacobi identity (42), while on the right

hand side we have a complete cancellation all the way to zero. This completes my proof,

quod erat demonstrandum.

Besides the proof, let’s see under what conditions can the double vector product appear

to be associative. In general, it is NOT associative, so the relation

A× (B×C)
??
= (A×B)×C (49)

does not work for generic vectors A,B,C. But it might happen to hold true for some special

vectors, so let’s find out what does it take to ‘accidentally’ satisfy the relation (49).
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Thanks to the antisymmetry of the cross product,

(A×B)×C = −C× (A×B). (50)

Consequently, the difference between two sides of eq. (49) can be written as

A× (B×C) − (A×B)×C = A× (B×C) + C× (A×B)

〈〈 using the Jacobi identity (42) 〉〉

= −B× (C×A).

(51)

To make the right hand side here vanish, we need B to be parallel to C×A, which means

that B should be ⊥ to both C and A. We may also have the C and A vectors be parallel to

each other (which would give us C×A = 0), or any of the three vectors may vanish. These

are the only possibilities — in all other cases, the RHS of eq. (51) does not vanish and the

associativity relation (49) does not work.

Problem 1.11:

(a) For f(x, y, z) = x2 + y3 + z4, the partial derivatives are

∂f

∂x
= 2x,

∂f

∂y
= 3y2,

∂f

∂z
= 4z3, (52)

hence the gradient vector

∇f(x, y, z) = 2x x̂ + 3y2 ŷ + 4z3 ẑ. (53)

(b) For f(x, y, z) = x2y3z4, the partial derivatives are

∂f

∂x
= 2xy3z4,

∂f

∂y
= 3x2y2z4,

∂f

∂z
= 4x2y3z3, (54)

hence the gradient vector

∇f(x, y, z) = 2xy3z4 x̂ + 3x2y2z4 ŷ + 4x2y3z3 ẑ. (55)
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(c) For f(x, y, z) = ex sin(y) ln(z), the partial derivatives are

∂f

∂x
= ex × sin(y) ln(z),

∂f

∂y
= cos(y)× ex ln(z),

∂f

∂z
=

1

z
× ex sin(y), (56)

hence the gradient vector

∇f(x, y, z) = ex sin(y) ln(z) x̂ + ex cos(y) ln(z) ŷ + ex sin(y)
1

z
ẑ. (57)

Problem 1.13:

In ordinary calculus, a derivative of a function of a function — for example the derivative of

g(f) for f = f(x) with respect to x is given by the chain rule,

dg(f(x))

dx
=

dg

df
× df

dx
. (58)

The same rule applies for partial derivatives of function of functions. For example, let f(s)

be a function of s which is itself a function of the 3 coordinates (x, y, z). In this case, the

partial derivatives of f with respect to the coordinates are given by the chain rule

∂f(s(x, y, z))

∂x
=

df

ds
× ∂s

∂x
,

∂f(s(x, y, z))

∂y
=

df

ds
× ∂s

∂y
,

∂f(s(x, y, z))

∂z
=

df

ds
× ∂s

∂z
. (59)

In terms of the gradient vector, this means

∇f(s(x, y, z)) =
df

ds
∇s. (60)

Now let’s apply this rule to functions of the radius r = |r|, or more generally, to functions

of the distance R = |r − R0| from some fixed point R0. For any such function f(R), its
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gradient obtains as

∇f(R) =
df

dR ∇R . (61)

In particular, for powers of the distance f(R) = Rn,

∇
(
Rn

)
= nRn−1 ∇R , (62)

for example

∇R2 = 2R∇R, ∇ 1

R =
−1

R2
∇R, etc., etc. (63)

To complete the evaluation of all such gradients, all we need not is the ∇R. But actually,

it is easier to start with ∇R2. Indeed,

R2 = |r−R0|2 = (x−X0)
2 + (y − Y0)

2 + (z − Z0)
2, (64)

so its easy to evaluate its gradient as

∇R2 = 2(x−X0)x̂ + 2(y − Y0)ŷ + 2(z − Z0)ẑ, (65)

which has a nice vector form:

∇R2 = 2(r−R0). (66)

At the same time, ∇R2 = 2R∇R, hence the gradient of the distance R itself is

∇R =
1

2R ∇R2 =
2(r−R0)

2|r−R0|
= R̂, (67)

the unit vector in the radial direction from R0 to r.

Consequently, the gradient of any function ofR is the ordinary derivative of that function

times a unit vector in the radial direction from the fixed point R0 to the point r where we
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take the gradient,

∇f(R) =
df

dR R̂ . (68)

In particular,

∇R2 = 2RR̂ = 2 ~R, ∇ 1

R =
−1

R2
R̂, (69)

or for any other power Rn,

∇Rn = nRn−1R̂. (70)
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