
PHY–352 K. Solutions for problem set #2.

Problem 2.15:

By spherical symmetry, the electric field has the radial direction and its magnitude depends

only on the radial coordinate,

E(r) = E(r only) r̂. (1)

Moreover, the magnitude E(r) follows from the Gauss Law:

E(r) =
Q[inside radius r]

4πǫ0 r2
. (2)

Now let’s focus on the thick spherical shell in question (cf. figure 2.25). In the region (i)

— inside the cavity, r < a, — there are no charges inside the Gaussian sphere of radius r,

hence Q[r] = 0, and the electric field vanishes, E = 0.

In the region (ii) — in the thickness of the shell, a < r < b, — the Gaussian sphere

comprises the part of the shell between radia a and r. The net charge inside such a Gaussian

sphere is

Q[r] =

r
∫

a

ρ(r′)× dV (r′) (3)

where dV (r′) = 4πr′2 × dr′ while ρ(r′) = k/r′2 for a constant k. Consequently

Q[r] =

r
∫

a

k

r′2
× 4πr′2 dr′ = 4πk

r
∫

a

dr′ = 4πk(r − a), (4)

hence by the Gauss Law,

E(r) =
4πk(r − a)

4πǫ0r2
. (5)

Finally, in the region (iii) — outside the shell, r > b, — the net charge inside the
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Gaussian sphere of radius r is the total charge of the shell,

Q[r] = Qtot =

b
∫

a

ρ(r′)× dV (r′) = 4πk × (b− a). (6)

Consequently, by the Gauss Law,

E(r) =
4πk(b− a)

4πǫ0 r2
. (7)

Finally, here is the plot of the electric field as a function of the radius for b = 2a:

r

E

a b

Problem 2.16:

By the axial symmetry of the system, the electric field is ⊥ to the axis and points in the

radial direction directly away from or towards the axis. Also, its magnitude depends only

on the radial distance from that axis. In the cylindrical coordinates (s, φ, z),

E(s, φ, z) = E(s only) ŝ. (8)

Also, the magnitude E(s) follows from the Gauss Law where the Gaussian surface is a coaxial

cylinder of radius s and length L:

E(s) =
Q[inside s and L]

2πsLǫ0
. (9)

Moreover, since all the charges are uniformWRT to the z axis, the charge inside the Gaussian

cylinder is always proportional to its length, so if we define the linear charge density λ(s)
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inside radius s as

λ(s) =
1

L
×Q[inside s× L cylinder], (10)

then

E(s) =
λ(s)

2πǫ0 s
. (11)

Now consider the cable in question. Inside the inner cylinder (region (i), s < a) we have

uniform volume charge density ρ = const, hence the net linear density inside a Gaussian

cylinder of radius s < a is

λ(s) =

∫

s′<s

ρ dArea =

s
∫

0

ρ× 2πs′ ds′ = ρ× πs2. (12)

Consequently, by the Gauss Law (11), the electric field in this region is

E(s) =
λ(s) = πs2ρ

2πǫ0 s
=

ρ

2ǫ0
× s. (13)

Note: the field increases linear with the radius insider the inner cable.

Inside the neutral volume of the outer shell ( region (ii), a < s < b), the net charge inside

a Gaussian cylinder of radius s is simply the net charge of the inner cable. In terms of the

linear charge density,

λ(s) = ρ× πa2, (14)

hence the electric field

E(s) =
λ(s) = πa2ρ

2πǫ0 s
=

ρ

2ǫ0
×

a2

s
. (15)

In this region, the electric field decreases as 1/s.

Finally, outside the outer shell (region (iii), s > b), the Gaussian surface encloses both

the inner cable and the outer shell, and their electric charges cancel each other — the cable

as a whole is electrically neutral. Consequently, outside the outer shell λ(s) = 0 and the

electric field vanishes, E(s) = 0.
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Here is the plot of the electric field as a function of s for b = 3a:

r

E

a b

Problem 2.18:

Note: to be precise, the electric charge density (by volume) is

ρ =











+ρ inside the first sphere but outside the second sphere,

−ρ inside the second sphere but outside the first sphere,

0 in the overlapping region.

(16)

This way, the entire system is a superposition of two uniformly charged balls — one of

density +ρ, the other of density −ρ — so in the overlapping region the net charge density is

+ρ− ρ = 0.

Consequently, the electric field of this charged system is the superposition Enet = E1+E2

where E1 is the field due to the first charged ball only and the E2 is the field due to the

second ball only. In particular, inside the overlap of the two balls,

Enet(r) = E1(r inside ball#1) + E2(r inside ball#2). (17)

The electric field inside a ball of uniform charge density follows from the Gauss Law. As
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explained in my notes on Gauss Law applications,

E(r) =
Q[inside the Gaussian sphere of radius r]

4πǫ0 r2

=
4π
3 r3 × ρ

4πǫ0 r2
=

ρ

3ǫ0
× r

(18)

Moreover, the direction of this electric field is radial, so in vector notations

E(r) =
ρ

3ǫ0
× r (inside the ball). (19)

To be precise, this formula applies to the ball centered at the origin of the coordinate system.

For a ball centered at some point Rcenter, the field inside the ball is

E(r) =
ρ

3ǫ0
× (r−Rcenter). (20)

Now let’s plug this formula into eq. (17) for the superposition of electric fields in the

overlap of the two balls. Let the first ball’s center be at R1 while the second ball’s center is

at R2. Than in the overlapping region,

E1(r) =
+ρ

3ǫ0
× (r−R1),

E2(r) =
−ρ

3ǫ0
× (r−R2),

Enet(r) = E1(r) + E2(r)

=
ρ

3ǫ0
×
(

(r−R1) − (r−R2)
)

=
ρ

3ǫ0
× (R2 −R1).

(21)

Note that r — the point where we measure the electric field — cancels out from the formula

on the last line here! This means that the electric field in the overlapping region is uniform

and parallel, i.e., it’s constant as a vector! The direction of this field if from the center of

the positive ball to the center of the negative ball, and its magnitude is

E =
ρ

3ǫ0
× d. (22)
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Problem 1.15:

V = x2x̂ + 3xz2ŷ − 2xzẑ, (a)

∇ ·V =
∂

∂x
(Vx = x2) +

∂

∂y
(Vy = 3xz2) +

∂

∂z
(Vz = −2xz)

= 2x + 0 + (−2x) = 0. (23)

V = xyx̂ + 2yzŷ + 3zxẑ, (b)

∇ ·V =
∂

∂x
(Vx = xy) +

∂

∂y
(Vy = 2yz) +

∂

∂z
(Vz = 3zx)

= y + 2z + 3x. (24)

V = y2x̂ + (2xy + z2)ŷ + 2yzẑ, (c)

∇ ·V =
∂

∂x
(Vx = y2) +

∂

∂y
(Vy = 2xy + z2) +

∂

∂z
(Vz = 2yz)

= 0 + 2x + 2y. (25)

Problem 1.18:

In general

∇×V =

(

∂Vz
∂y

−
∂Vy
∂z

)

x̂ +

(

∂Vx
∂z

−
∂Vz
∂x

)

ŷ +

(

∂Vy
∂x

−
∂Vx
∂y

)

ẑ. (26)

V = x2x̂ + 3xz2ŷ − 2xzẑ, (a)

∇×V =

(

∂(−2xz)

∂y
−

∂(3xz2)

∂z

)

x̂ +

(

∂(x2)

∂z
−

∂(−2xz)

∂x

)

ŷ

+

(

∂(3xz2)

∂x
−

∂(x2)

∂y

)

ẑ

=
(

0− 6xz
)

x̂ +
(

0− (−2z)
)

ŷ +
(

3z2 − 0
)

ẑ

= −6xzx̂ + 2zŷ + 3z2ẑ. (27)
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V = xyx̂ + 2yzŷ + 3zxẑ, (b)

∇×V =

(

∂(3zx)

∂y
−

∂(2yz)

∂z

)

x̂ +

(

∂(xy)

∂z
−

∂(3zx)

∂x

)

ŷ

+

(

∂(2yz)

∂x
−

∂(xy)

∂y

)

ẑ

=
(

0− 2y
)

x̂ +
(

0− 3z
)

ŷ +
(

0− x
)

ẑ

= −2yx̂ − 3zŷ − xẑ. (28)

V = y2x̂ + (2xy + z2)ŷ + 2yzẑ, (c)

∇×V =

(

∂(2yz)

∂y
−

∂(2xy + z2)

∂z

)

x̂ +

(

∂(y2)

∂z
−

∂(2yz)

∂x

)

ŷ

+

(

∂(2xy + z2)

∂x
−

∂(y2)

∂y

)

ẑ

=
(

2z − 2z
)

x̂ +
(

0− 0
)

ŷ +
(

2y − 2y
)

ẑ

= 0. (29)

Problem 1.20:

For example,

V = xx̂ + yŷ − 2zẑ, (30)

∇ ·V =
∂(x)

∂x
+

∂(y)

∂y
+

∂(−2z)

∂z

= 1 + 1 − 2 = 0. (31)

∇×V =

(

∂(−2z)

∂y
−

∂(y)

∂z

)

x̂ +

(

∂(x)

∂z
−

∂(−2z)

∂x

)

ŷ +

(

∂(y)

∂x
−

∂(x)

∂y

)

ẑ

= (0− 0)x̂ + (0− 0)ŷ + (0− 0)ẑ = 0. (32)

Problem 1.26:

The Laplacian is defined as

△ = ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (33)

and it may act on both scalar and vector fields. Let’s apply this operator to the 4 fields in
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question:

Ta = x2 + 2xy + 3z + 4, (a)

∂2

∂x2
Ta = 2 + 0 + 0 + 0 = 2,

∂2

∂y2
Ta = 0 + 0 + 0 + 0 = 0,

∂2

∂z2
Ta = 0 + 0 + 0 + 0 = 0,

△Ta = 2 + 0 + 0 = 2. (34)

Tb = sin x× sin y × sin z, (b)

∂2

∂x2
Tb = (− sin x)× sin y × sin z,

∂2

∂y2
Tb = sin x× (− sin y)× sin z,

∂2

∂z2
Tb = sin x× sin y × (− sin z),

△Tb = −3 × sin x× sin y × sin z. (35)

Tc = exp(−5x)× sin(4y)× cos(3z), (c)

∂2

∂x2
Tc =

(

+25 exp(−5x)
)

× sin(4y)× cos(3z),

∂2

∂y2
Tc = exp(−5x)×

(

−16 sin(4x)
)

× cos(3z),

∂2

∂z2
Tc = exp(−5x)× sin(4y)×

(

−9 cos(3z)
)

,

△Tz = exp(−5x)× sin(4y)× cos(3z)× (+25 − 16 − 9 = 0) = 0. (36)

V = x2x̂ + 3xz2ŷ − 2xzẑ, (d)

∂2

∂x2
V = 2x̂ + 0ŷ + 0ẑ = 2x̂,

∂2

∂y2
V = 0x̂ + 0ŷ + 0x̂ = 0,

∂2

∂z2
V = 0x̂ + 6xŷ + 0ẑ = 6xŷ,

△V = 2x̂ + 0ŷ + 6xŷ, (37)

or in components, Vx = 2, Vy = 6x, Vz = 0.
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Problem 1.61:

(a) Given a scalar field T (x, y, z), let’s make the vector field V(x, y, z) = T (x, y, z)c for some

constant vector c. The divergence of this vector field follows from the Leibniz rule,

∇ · (Tc) = (∇T ) · c + T (∇ · c) = c · ∇T + 0. (38)

Hence, the volume integral of this divergence over some compact volume V is

∫∫∫

V

(

∇ · (Tc)
)

d3Vol =

∫∫∫

V

(

c · ∇T ) d3Vol = c ·

∫∫∫

V

(∇T ) d3Vol. (39)

By the Gauss Theorem, this integral is equal to the flux of Tc through the complete surface

S of the volume V, thus

∫∫∫

V

(

∇ · (Tc)
)

d3Vol =

∫∫

S

(Tc) · d2A = c ·

∫∫

S

T d2A (40)

where the second equality follows from c being a constant vector. Altogether, we have

c ·

∫∫∫

V

(∇T ) d3Vol = c ·

∫∫

S

T d2A. (41)

Note that this equation must hold true for any constant vector c, which can only happen if

∫∫∫

V

(∇T ) d3Vol =

∫∫

S

T d2A. (42)

Quod erat demonstrandum.

(b) Now let’s start with a vector field V(x, y, z) and cross it with a constant vector c, thus

V′(x, y, z) = V(x, y, z) × c. The divergence of this cross product follows from the Leibniz

rule

∇ · (V × c) = c · (∇×V) − V · (∇× c) = c · (∇×V) + 0 (43)

where the second equality follows the vector c being constant (and thus having zero curl).

Consequently, taking the volume integral of this divergence over some compact volume V,
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we get

∫∫∫

V

(

∇ · (V × c)
)

d3Vol =

∫∫∫

V

(

c · (∇×V)
)

d3Vol = c ·

∫∫∫

V

(∇×V) d3Vol. (44)

On the other hand, by the Gauss Theorem

∫∫∫

V

(

∇ · (V × c)
)

d3Vol =

∫∫

S

(V × c) · d2A (45)

where S is the complete surface of the volume V. Moreover,

(V × c) · d2A = (d2A×V) · c = −c · (V × d2A), (46)

and since the vector c is constant,

∫∫

S

(V × c) · d2A = −c ·

∫∫

S

V × d2A. (47)

Altogether, we have

c ·

∫∫∫

V

(∇×V) d3Vol = −c ·

∫∫

S

V × d2A. (48)

And since this equation must hold true for any vector V, this means

∫∫∫

V

(∇×V) d3Vol = −

∫∫

S

V × d2A. (49)

quod erat demonstrandum.
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(c) This time, we start with two scalar fields T (x, y, z) and U(x, y, z) and form a vector field

as

V(x, y, z) = T (∇U). (50)

The divergence of this vector field is

∇ ·V = ∇ ·
(

T∇U) = (∇T ) · (∇U) + T (∇2U) (51)

where ∇2 = △ is the Laplacian operator (33).

Applying the Gauss Theorem to this divergence, we find that for any compact volume

V and its complete surface S,

∫∫∫

V

(

T (△U) + (∇T ) · (∇U)
)

=

∫∫

S

T (∇U) · d2A. (52)

Quod erat demonstrandum.

(d) Let’s proceed similar to the part (c), but anti-symmetrize V with respect to exchanging

T ↔ U . That is, let’s take

V(x, y, z) = T (∇U) − U∇(T ). (53)

Then by the Leibniz rule for the divergences,

∇ ·
(

T∇(U)
)

= (∇T ) · (∇U) + T (∇2U),

∇ ·
(

U∇(T )
)

= (∇U) · (∇T ) + U(∇2T ),

∇ ·V = (∇T ) · (∇U) + T (△U) − (∇U) · (∇T ) + U(△T ).

(54)

Consequently, applying the Gauss Theorem to the V field and its divergence, we have for

any compact volume V and its complete surface S,

∫∫∫

V

(

T (△U) − U(△T )
)

d3Vol =

∫∫

S

(

T (∇U) − U(∇T )
)

· d2A. (55)

Quod erat demonstrandum.
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(e) This time we go back to a single scalar field T (x, y, z), which we turn to a vector field

V(x, y, z) by multiplying T by a constant vector c, V = Tc. The curl of such product is

∇× (V = Tc) = (∇T )× c + T (∇× c) = −c× (∇T ) + 0 (56)

where the second equality follows from the constant vector c having zero curl. Consequently,

when we integrate the curl (56) over the area of some surface S, the integrand becomes

(

∇× (Tc)
)

· d2A = −
(

c× (∇T )
)

· d2A = −
(

(∇T )× d2A
)

· c, (57)

and since c is a constant vector,

∫∫

S

(

∇× (Tc)
)

· d2A = −c ·

∫∫

S

(∇T )× d2A. (58)

Now let S be a surface spanning some loop C; that is, S has a single boundary and C is that

boundary. Then by the Stokes’ theorem

∫∫

S

(

∇× (Tc)
)

· d2A =

∮

C

(Tc) · d~ℓ = c ·

∮

C

T d~ℓ. (59)

Altogether, we have

−c ·

∫∫

S

(∇T )× d2A = c ·

∮

C

T d~ℓ, (60)

and since this equation must hold for any vector c, it follows that

∫∫

S

(∇T )× d2A = −

∮

C

T d~ℓ. (61)

Quod erat demonstrandum.

Problem 1.62:

Let me first solve the five parts of the problem in the order they are given. And then I’ll

give an alternative solution to parts (a–d) in reverse order.
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(a) Let’s identify the hemispherical bowl in question with the Northern hemisphere of some

sphere; in spherical coordinates (r, θ, φ) the radius is fixed r ≡ R, the latitude θ runs from 0

(the North pole) to π/2 (the equator), while the longitude φ runs from 0 to 2π.

By the axial symmetry of the hemisphere, the area vector A has to point along the

symmetry axis, i.e., in the z direction. So the only component of the area vector we need to

calculate is the z component Az .

For any infinitesimal part of the sphere — and thus of the hemisphere in question —

the d2A vector is ⊥ to the surface and therefore points radially out from the center of the

sphere, d2A = d2Ar̂. At latitude θ, this vector makes angle θ with the z axis, hence

(d2A)z = d2A× cos θ. (62)

In spherical coordinates d2A = R2 sin θ dθ dφ, hence

(d2A)z = cos θ ×R2 sin θ × dθ dφ. (63)

Therefore, the net area vector of the hemisphere (or rather its z component) is the integral

Az =

π/2
∫

0

dθ

2π
∫

0

dφR2 sin θ cos θ

= 2πR2 ×

π/2
∫

0

sin θ cos θ dθ

= 2πR2 ×

π/2
∫

0

d
(

1
2 sin

2 θ
)

= 2πR2 ×
(

1
2 sin

2 θ
)
∣

∣

∣

θ=π/2

θ=0

= 2πR2 ×
(

1
2 − 0

)

= πR2,

(64)

same as the area of the disk in the equatorial plane.
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In vector notations

A = πR2 ẑ. (65)

(b) Suppose S is a closed surface: it has no boundary, and S itself is the complete boundary

of some volume V. Then as we saw in problem 1.161(a),

∫∫∫

V

(∇T ) d3Vol =

∫∫

S

T d2A (66)

for any scalar field T (x, y, z). For our purposes, we take T ≡ 1, so the integral on the RHS

of (66) becomes simply the vector area of S. At the same time, on the LHS ∇T ≡ 0, so the

integral vanishes. Thus, the vector area of a closed surface S is zero.

(c) Let two surfaces S1 and S2 have the same boundary C. Note: C must be the complete

boundary of each surface, they cannot have other boundaries besides C.

Let us glue the two surfaces together along their common boundary. Let us also reverse

the orientation of one of the surfaces — say, the S2 — which means reversing the direction

of the infinitesimal area vectors d2A. This way, for both surfaces +S1 and −S2, the d2A

vector points from the inside of the volume trapped between the S1 and S2 to the outside of

that volume. Consequently, the combined surface S = +S1 − S2 acts as a complete surface

of some volume, so it’s closed and has no boundaries. Therefore, as we have seen in part

(b), the combined surface has zero vector area.

On the other hand,

A(S) =

∫∫

S

d2A =

∫∫

S1

d2A −

∫∫

S2

d2A = A(S1) − A(S2) , (67)

where the minus sign comes from the orientation reversal. So the fact that the combined

surface S has zero vector area means that the area vectors of the S1 and the S2 surfaces

must be equal,

A(S1) = A(S2) , (68)

quod erat demonstrandum.
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(d) First, the solution suggested in the textbook. By part (c), the area vectors of all surfaces

spanning the same loop C are equal, so instead of calculating the area vector of the original

surface S, let’s calculate the area vector of the cone with base at the loop C and the vertex

at the coordinate origin (x = 0, y = 0, z = 0). That is, the cone spans the finite straight

lines from the origin to all points of the loop C.

If we partition the loop C into infinitesimal intervals d~ℓ, then the cone is partitioned into

infinitesimal triangles with sides r, d~ℓ, and r+ d~ℓ as shown on the figure below:

C

d~ℓ

r

r+ d~ℓ

origin

The vector area of this triangle is

d2A = 1
2r× d~ℓ, (69)

so the vector are of the whole cone is the integral

A(cone) =
1

2

∮

C

r× d~ℓ. (70)

And since the original surface S has the same boundary C as this cone, it also has the same

vector area.

(e) Let’s apply the result of the problem 1.61(e) to the scalar field T (x, y, z) = c · r where

c is a constant vector. The gradient of this field is simply c:

T (x, y, z) = cx × x + cy × y + cz × z,

∂T

∂x
= cx ,

∂T

∂y
= cy ,

∂T

∂z
= cz ,

∇T = cxx̂ + cyŷ + czẑ = c.

(71)
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Consequently,

∫∫

S

(∇T )× d2A =

∫∫

S

c× d2A = c×

∫∫

S

d2A = c×A(S). (72)

At the same time, according to problem 1.61(e),

∫∫

S

(∇T )× d2A = −

∮

C

T d~ℓ = −

∮

C

(c · r) d~ℓ.

Therefore,
∮

C

(c · r) d~ℓ = −c×A(S) = A(S)× c, (73)

quod erat demonstrandum.

Alternative solution to parts (a–d).

This time, I start by proving part (d) without using parts (a–c); and then parts (c), (b), and

(a) will follow trivially from part (d).

My key to part (d) is the vector field V(x, y, z) = c × r (where c is a constant vector)

whose curl is ∇×V = 2c. Indeed, by inspection in components:

(

∇×V
)

x
=

∂

∂y

(

Vz = cx × y − cy × x
)

−
∂

∂z

(

Vy = cz × x − cx × z
)

= (+cx) − (−cx) = 2cx ,

(

∇×V
)

y
=

∂

∂z

(

Vx = cy × z − cz × y
)

−
∂

∂x

(

Vz = cx × y − cy × x
)

= (+cy) − (−cy) = 2cy ,

(

∇×V
)

z
=

∂

∂x

(

Vy = cz × x − cx × z
)

−
∂

∂y

(

Vx = cy × z − cz × y
)

= (+cz) − (−cz) = 2cz .

(74)

Now let apply the Stokes’ theorem to this vector field:

∮

C

(c× r) · d~ℓ =

∫∫

S

(

∇× (c× r)
)

· d2A =

∫∫

S

(2c) · d2A = 2c ·A. (75)
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At the same time, in the integrand on the LHS here

(c× r) · d~ℓ = (r× d~ℓ) · c (76)

and hence
∮

C

(c× r) · d~ℓ = c ·

∮

C

r× d~ℓ. (77)

Altogether, we get

2c ·A = c ·

∮

C

r× d~ℓ, (78)

and this equality must hold for any constant vector c. Therefore, the vector area of the

surface S must be

A(S) =
1

2

∮

C

r× d~ℓ, (79)

which completes the proof of part (d).

Part (c) follows trivially from the formula (79) for the vector area of a surface. Indeed,

when any two surfaces have the same boundary C, then the loop integral on the RHS of

eq. (79) is exactly the same for both surfaces, hence the same vector are for both surfaces.

Given part (c), part (b) is just a special case: if a surface has no boundary, then the

integral on the RHS of eq. (79) is zero, so the vector area of the surface is zero.

Finally, part (a) is also a special case of part (c). The boundary of the hemisphere is

the equatorial circle, and the flat disk in the equatorial plane has the same boundary. By

part (c) the hemisphere and the disk have the same vector areas, and since the disk is flat,

its vector area is simply its ordinary area πR2 times the unit vector ⊥ to the disk. Hence,

the vector area of the hemisphere has magnitude πR2 (unlike its ordinary area 2πR2), and

its direction is along the symmetry axis of the hemisphere.
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Problem 2.20:

A static electric field E(x, y, z) must have zero curl. By inspection, the curl of the (a) field

is

Ea = kxyx̂ + 2kyzŷ + 3kxzẑ,

∇× Ea =

(

∂(Ez = 3kxz)

∂y
−

∂(Ey = 2kyz)

∂z

)

x̂

+

(

∂(Ex = kxy)

∂z
−

∂(Ez = 3kxz)

∂x

)

ŷ

+

(

∂(Ey = 2kyz)

∂x
−

∂(Ex = kxy)

∂y

)

ẑ

= (0− 2ky)x̂ + (0− 3kz)ŷ + (0− kx)ẑ = −k(2yx̂ + 3zŷ + xẑ)

6= 0

(80)

So the (a) field is impossible in electrostatics.

As to the (b) field,

Eb = ky2x̂ + k(2xy + z2)ŷ + 2kyzẑ,

∇× Eb =

(

∂(Ez = 2kyz)

∂y
−

∂(Ey = k(2xy + z2))

∂z

)

x̂

+

(

∂(Ex = ky2)

∂z
−

∂(Ez = 2kyz)

∂x

)

ŷ

+

(

∂(Ey = k(2xy + z2))

∂x
−

∂(Ex = 2kyz)

∂y

)

ẑ

= (2kz − 2kz)x̂ + (0− 0)ŷ + (2ky − 2ky)ẑ

= 0x̂ + 0ŷ + 0ẑ = 0,

(81)

So the (b) field is possible.

Now let’s find the electric potential V (x, y, z) for the (b) field by integrating

V (O) − V (x, y, z) =

r
∫

O

E · d~ℓ, (82)

where O is some reference point, and we may integrate along any path from O to the r. For
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the sake of definiteness, let the reference point O be the coordinate origin, and let’s us the

following 3-leg path from O = (0, 0, 0) to the point (x, y, z) where we calculate the potential:

1. From (0, 0, 0) to (x, 0, 0) along the x axis.

2. From (x, 0, 0) to (x, y, 0) parallel to the y axis.

3. From (x, y, 0) to (x, y, z) parallel to the z axis.

Along the first leg of the path, we have

(x,0,0)
∫

(0,0,0)

E · d~ℓ =

x
∫

0

dx′Ex(x
′, 0, 0) =

x
∫

0

dx′ (ky2 = 0) = 0. (83)

Along the second leg,

(x,y,0)
∫

(x,0,0)

E · d~ℓ =

y
∫

0

dy′
(

Ey(x, y
′, 0) = k(2xy′ + 2z2) = 2kx× y′

)

=
(

kx× y′2
)
∣

∣

∣

y′=y

y′=0
= kxy2.

(84)

Finally, along the third leg

(x,y,z)
∫

(x,y,z)

E · d~ℓ =

z
∫

0

dz′
(

Ez(x, y, z
′) = 2ky × z′

)

=
(

ky × z′2
)
∣

∣

∣

z′=z

z′=0
= kyz2.

(85)

Altogether,

V (0, 0, 0) − V (x, y, z) =

(x,y,z)
∫

(0,0,0)

E · d~ℓ = 0 + kxy2 + kyz2. (86)

So is we set the potential at the reference point (0, 0, 0) to zero, then the electric potential
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everywhere else is

V (x, y, z) = −k(xy2 + yz2). (87)

To check our calculation, let’s take (minus) the gradient of this potential and compare

to the electric field E(b):

−
∂V

∂x
= +ky2, −

∂V

∂y
= +k(2xy + z2), −

∂V

∂z
= +2kyz, (88)

thus

−∇V (x, y, z) = ky2x̂ + k(2xy + z2)ŷ + 2kyzẑ = indeed = E(x, y, z). (89)

Problem 2.21:

There are two ways to calculate the potential due to a uniformly charged solid ball: I can

do it directly from the Coulomb law for the potential,

V (r) =
1

4πǫ0

∫∫

ball

ρ(r′)

|r− r′|
dx′ dy′ dz′, (90)

similarly to how I have done the potential of a spherical shell in my notes on gradient,

divergence, curl, and related issues (pages 19–21). Alternatively, I can start with the electric

field obtained from the symmetry and the Gauss Law, and get the potential from the field.

Let me follow the second route, since it’s clearly what the textbook expects — and it’s also

much easier.

The electric field of a uniformly charged solid ball is worked out in detail in my notes on

applications of the Gauss Law (page 4), and also in the textbook example 2.3 (pages 71–72).

Outside the ball, the electric field is the same as if the entire charge was concentrated at the
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ball’s center,

for r > R, E(r) =
Q

4πǫ0

r̂

r2
, (91)

while inside the ball, the electric field grows linearly with the distance from the center,

for r < R, E(r) =
Q

4πǫ0

r

R3
r̂. (92)

Graphically,

r

E

R

(93)

To verify these formulae, let’s take the divergence of the electric field and compare to the

electric charge density ρ: Outside the ball,

∇ · E =
Q

4πǫ0
×∇

(

r̂

r2

)

=
Q

4πǫ0
×

((

d

dr
+

2

r

)

1

r2

)

= 0 (94)

— which agrees with ρ = 0 outside the ball,— while inside the ball,

∇ · E =
Q

4πǫ0R3
×
(

∇ · (rr̂ = r)
)

=
Q

4πǫ0R3
× 3 =

1

ǫ0
×

Q

(4π/3)R3
=

ρ(inside)

ǫ0
. (95)

Anyhow, given the electric field E(x, y, z), the potential V (x, y, z) obtains from integrat-

ing

V (x, y, z) =

O
∫

(x,y,z)

E · d~ℓ (96)

over any path we like from (x, y, z) to the reference point O (where we take V (O) = 0), For
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a spherically symmetric electric field E = E(r only)r̂,

E · d~ℓ = E(r) r̂ · d~ℓ = E(r) dr (97)

so the integral (96) over some path is simply the radial integral

V (r only) =

RO
∫

r

dr′E(r′). (98)

Specifically, for the reference point at infinity,

V (r only) =

∞
∫

r

dr′E(r′). (99)

In particular, for r > R outside the ball, the potential is

V (r) =

∞
∫

r

Q

4πǫ0

1

r′2
dr′ =

Q

4πǫ0

∞
∫

r

d

(

−1

r′

)

=
Q

4πǫ0

(

−1

∞
−

1

r

)

=
Q

4πǫ0
×

1

r
. (100)

the same as the Coulomb potential due to a point charge Q at the center of the ball.

Now let’s calculate the potential inside the ball, at r < R. This time, we should iintegrate

the electric field from r to ∞ and use different formulae for the field inside and outside the

ball. Thus,

v(r) =

∞
∫

r

dr′

(

E(r′) =
Q

4πǫ0
×

{

r′

R3 for r′ < R

1
r′2 for r′ > R

})

=
Q

4πǫ0
×







R
∫

r

dr′
r′

R3
+

∞
∫

R

dr′
1

r′2







=
Q

4πǫ0
×

{

R2 − r2

2R3
+

1

R

}

=
Q

4πǫ0
×

3R2 − r2

2R3
.

(101)
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Altogether, the electric potential due to a uniformly charged solid ball is

V (r) =
Q

4πǫ0
×















1

r
for r > R (outside the ball),

3R2 − r2

2R3
for r < R (inside the ball).

(102)

Graphically,

r

E

R (103)

Finally, to verify our calculation, let’s take (minus) the gradient of the potential (102)

and compare to the electric field of the solid ball:

−∇
1

r
=

r̂

r2
, −∇

3R2 − r2

2R3
=

rr̂

R3
, (104)

hence

−∇V (r) =
Q

4πǫ0







1

r2
outside the ball

r

R3
inside the ball







r̂ = indeed = E. (105)

Problem 2.22:

Similarly to the previous problem, let me start from the electric field of the wire,

E =
λ

2πǫ0

ŝ

s
(106)

where s is the distance from the wire in the plane ⊥ to the wire and ŝ is the unit vector

radially away from the wire in the ⊥ plane. In the cylindrical coordinates (s, φ, z) where the

wire runs along the z axis, s is the radial coordinate and ŝ is the unit vector in s direction.
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The electric field (105) of the wire obtains from the axial symmetry and the Gauss Law,

see my notes on applications of the Gauss Law (page 7), so I am not going to repeat the

calculation here. Instead, let me simply derive the potential from the electric field (105).

As usual, the potential obtains from the integration

V (x, y, z) =

O
∫

(x,y,z)

E · d~ℓ (107)

along an arbitrary path from the point (x, y, z) where we calculate the potential to some

fixed reference point O where we set V = 0. Due to axial symmetry of the electric field of

the wire, in cylindrical coordinates

E(s, φ, z) = E(s only)ŝ =⇒ E · d~ℓ = E(s) ds , (108)

hence the potential V depends only on the s coordinate — the distance from the wire.

Specifically,

V (s) =

SO
∫

s

E(s′) ds′ =

SO
∫

s

λ

2πǫ0
×

ds′

s′
=

λ

2πǫ0
× ln

S(O)

s
, (109)

or in Cartesian coordinates (where the wire runs along the z axis),

V (x, y, z) =
λ

2πǫ0
× ln

S(O)
√

x2 + y2
. (110)

Note that we cannot get rid of the explicit S(O) in this formula by sending the reference

point to infinity since that would add an infinite constant to the potential. Likewise, we

cannot put the reference point in the middle of the wire (if its infinitely thin), so we are

stuck with an explicit S(O) in the denominator inside the logarithm. We may set the S(O)

to any constant we like, but that constant has to be finite and non-zero.

It remains to check that (minus) gradient of the potential (109) agrees with the electric

field (106) of the infinite thin wire. Indeed, by the chain rule

−∇V (s) = −
dV

ds
∇s = +

λ

2πǫ0

1

s
ŝ = indeed = E(wire). (111)
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