
PHY–352 K. Solutions for problem set #4.

Problem 2.34:

(a) Back in homework #2 (problem 2.21), we have found the electric potential of a uniformly

charged solid ball of radius R:

outside the ball, V (r) =
Q

4πǫ0
× 1

r
,

inside the ball, V (r) =
Q

4πǫ0
× 3R2 − r2

2R3
.

(1)

The charge density inside the ball is

ρ =
Q

4π
3
R3

(2)

while outside the ball ρ = 0. Consequently, the textbook equation (2.43) for the electrostatic

potential energy of the charged ball yields

U =
1

2

∫∫∫

whole
space

ρ(r)× V (r)× d3Vol =
1

2

∫∫∫

the
ball

ρ(r)× V (r)× d3Vol

=
1

2

R
∫

0

Q
4π
3
R3

× Q

4πǫ0

3R2 − r2

2R3
× 4πr2 dr

=
3Q2

16πǫ0R6
×

R
∫

0

(3R2r2 − r4) dr

=
3Q2

16πǫ0R6
×
(

3R2 × R3

3
− R5

5
=

4R5

5

)

=
3

20π
× Q2

ǫ0R
.

(3)
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(b) Another way to obtain the electrostatic potential energy of any continuous charge system

is to integrate the square of the electric field over the whole space: According to the textbook

equation (2.45),

U =
ǫ0
2

∫∫∫

whole
space

E2(r) d3Vol . (4)

For the solid ball in question, the electric field is

outside the ball, E(r) =
Q

4πǫ0

1

r2
r̂ ,

inside the ball, E(r) =
Q

4πǫ0
× r

R3
r̂ .

(5)

Consequently,

∫∫∫

inside
the ball

E2(r) d3Vol =

(

Q

4πǫ0

)2

×
R
∫

0

r2

R6
× 4πr2 dr

=

(

Q

4πǫ0

)2

× 4π

R6
×

R
∫

0

r4 dr

=

(

Q

4πǫ0

)2

× 4π

R6
× R5

5

=
1

20π
× Q2

ǫ20R
,

(6)

while

∫∫∫

outside
the ball

E2(r) d3Vol =

(

Q

4πǫ0

)2

×
∞
∫

R

1

r4
× 4πr2 dr

=
Q2

4πǫ20
×

∞
∫

R

dr

r2

=
Q2

4πǫ20
× 1

R
.

(7)
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Altogether,

∫∫∫

whole
space

E2(r) d3Vol =

∫∫∫

inside
the ball

E2(r) d3Vol +

∫∫∫

outside
the ball

E2(r) d3Vol

=
1

20π
× Q2

ǫ20R
+

1

4π
× Q2

ǫ20R

=
6

20π
× Q2

ǫ20R
,

(8)

and consequently the potential energy

U =
ǫ0
2
×

∫∫∫

whole
space

E2(r) d3Vol

=
ǫ0
2
× 6

20π
× Q2

ǫ20R

=
3

20π
× Q2

ǫ0R
.

(9)

Note the agreement of this energy with the energy calculated in part (a).

(c) The textbook equation (2.44) gives us yet another way of calculating the electrostatic

potential energy. This time, we integrate the E2 only over the volume occupied by the

charges but we also add a surface term,

U =
ǫ0
2





∫∫∫

V

E2 d3Vol +

∫∫

S

VE · d2A



 . (2.44)

For the problem at hand, V is the solid ball while S is its spherical surface. At that surface,

V = V (R) =
Q

4πǫ0
× 1

R
, E = E(R) r̂ where E(R) =

Q

4πǫ0
× 1

R2
. (10)

thus V E has a constant magnitude over the sphere and its direction is always ⊥ to the
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sphere. Consequently, the surface integral becomes simply

∫∫

sphere

VE ·d2A = V (R)×E(R)×Area(sphere) =
Q

4πǫ0R
× Q

4πǫ0R2
× 4πR2 =

Q2

4πǫ20R
.

(11)

As to the volume integral over the ball, we have already computed it in eq. (6). Thus,

altogether

∫∫∫

ball

E2 d3Vol +

∫∫

sphere

VE · d2A =
1

20π
× Q2

ǫ20R
+

1

4π
× Q2

ǫ20R
=

6

20π
× Q2

ǫ20R
, (12)

and therefore eq. (2.44) yields

U =
ǫ0
2
× 6

20π
× Q2

ǫ20R
=

3

20π
× Q2

ǫ0R
. (13)

Again, this energy agrees with the results of parts (a) and (b).

Problem 2.35:

Let’s build up the charged solid ball one infinitesimally thin spherical shell at a time by

bringing the net charge of that shell from infinitely far away. Throughout the process, the

volume charge density of the ball we are building is held to constant

ρ =
Qultimate

4π
3
R3
ultimate

(14)

Consider the shell of radius r and thickness dr. The net charge of this shell is

dQ = ρ× 4πr2 dr. (15)

At the time we assemble this shell, the ball has net charge

Q(r) =
4πr3

3
× ρ , (16)

hence the electrostatic potential at the ball’s surface relative to the infinity is

V (surface) − V (∞) =
Q(r)

4πǫ0 r
=

ρr2

3ǫ0
. (17)

Consequently, bringing the extra charge dQ from the infinity to the surface of the ball takes

4



work

dW = dQ×
(

V (surface) − V (∞)
)

= 4πρr2 dr × ρr2

3ǫ0
=

4πρ2

3ǫ0
× r4 dr. (18)

The net work for building the whole ball of radius Rultimate = R obtains by integrating this

formula

Wnet =

∫

dW

=

R
∫

0

4πρ2

3ǫ0
× r4 dr

=
4πρ2

3ǫ0
× R5

5
.

(19)

Rewriting this formula in terms of the net charge Qultimate = Q of the completed ball, we

obtain

Wnet =
4πR5

15ǫ0
×

(

ρ =
3Q

4πR3

)2

=
3

20π
× Q2

ǫ0R
. (20)

Finally, the electrostatic potential energy of the ball is precisely the net work of assem-

bling the ball, that is, starting with infinitesimal pieces spread out at the infinity and moving

them inward against the electrostatic repulsion forces. Thus,

U = Wnet =
3

20π
× Q2

ǫ0R
. (21)

By inspection, this energy agrees with what we had calculated in problem 2.34 by three

different methods.

Problem 2.37:

First, let me remind you a bit of theory I explained in class on Thursday 2/8.

Consider two charges, Q1 and Q2, not necessarily point-like. By itself, Q1 would create

the electric field E1(r), and likewise, Q2 by itself would create the field E2(r). By the
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superposition principle, the net field of the two charges is

E(r) = E1(r) + E2(r), (22)

so the net electrostatic energy of the system is

Unet =
ǫ0
2

∫∫∫

E2(r) d3Vol =
ǫ0
2

∫∫∫

(

E2
1 + E2

2 + 2E1 ·E2

)

d3Vol (23)

where the volume integrals are over the whole space. In other words,

Unet = U self
1 + U self

2 + U int
12 (24)

where

U self
1 =

ǫ0
2

∫∫∫

E2
1 d

3Vol, U self
2 =

ǫ0
2

∫∫∫

E2
2 d

3Vol, (25)

U int
12 = ǫ0

∫∫∫

E1 · E2 d
3Vol. (26)

Physically, the U self
1 is the self-interaction of the first charge — that is, the work of assembling

that charge from infinitesimal bits. Likewise, the U self
2 is the self-interaction energy of the

second charge. Finally, the U int
12 is the energy due to electrostatic forces between the two

charges, regardless of the self-energy of the two charges themselves. That is, suppose we

have already assembled the charges Q1 and Q2, but we keep them infinitely far away from

each other. Then the U int
12 energy stores the work of bringing these two charges from ∞ to

their ultimate locations near each other

For the point charges Q1 and Q2, the electrostatic self-energies U
self
1 and U self

2 are infinite,

but the interaction energy should be finite; specifically, we should have

U int
12 =

Q1Q2

4πǫ0R12
(27)

where R12 is the distance between the two charges. The purpose of this exercise is to show

that the interaction energy defined according to eq. (27) indeed agrees with this formula.
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And now, let’s calculate. Let’s choose our coordinate system such that the first charge

Q1 is at the origin, r1 = 0, while the second charge sits on the z axis, r2 = (0, 0, z2) where

z2 = +R12, the distance between the charges. Then at some generic point r, the electric

fields are

E1(r) =
Q1

4πǫ0

r

|r|3 , E2(r) =
Q2

4πǫ0

r− r2

|r− r2|3
, (28)

hence

ǫ0E1 · E2 =
Q1Q2

16π2ǫ0

r2 − r · r2
|r|2 |r− r2|3

. (29)

In spherical coordinates (r, θ, φ) for the r, we have

r2 = r2,

r2 − r · r2 = r2 − r cos θ × z2 = r(r − z2 cos θ),

|r− r2|2 = r2 + r22 − 2r · r2 = r2 + z22 − 2rz2 cos θ,

(30)

hence

r2 − r · r2
|r|2 |r− r2|3

=
r(r − z2 cos θ)

r3(r2 + z22 − 2rz2 cos θ)3/2
=

−1

r2
× ∂

∂r

1
√

r2 + z22 − 2rz2 cos θ
. (31)

Plugging this formula into eq. (29) and integrating over the whole space, we obtain

U int
12 =

∫∫∫

ǫ0E1 ·E2 d
3Vol

=

∞
∫

0

dr r2
∫∫

d2Ω(θ, φ)
Q1Q2

16π2ǫ0
× −1

r2
× ∂

∂r

1
√

r2 + z22 − 2rz2 cos θ

= − Q1Q2

16π2ǫ0

∫∫

d2Ω(θ, φ)

∞
∫

0

dr
∂

∂r

1
√

r2 + z22 − 2rz2 cos θ
.

(32)

Let’s do the radial integral first. For any fixed (θ, φ) we obtain

∞
∫

0

dr
∂

∂r

1
√

r2 + z22 − 2rz2 cos θ
=

1
√

r2 + z22 − 2rz2 cos θ

∣

∣

∣

∣

∣

∣

r=∞

r=0

=
1√∞ − 1

√

z22

= − 1

z2
= − 1

R12
,

(33)
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regardless of the angular coordinates (θ, φ). Consequently,

U int
12 = − Q1Q2

16π2ǫ0

∫∫

d2Ω

( −1

R12
= const

)

= +
Q1Q2

16π2ǫ0R12
×
∫∫

d2Ω

= +
Q1Q2

16π2ǫ0R12
× 4π = +

Q1Q2

4πǫ0R12
,

(34)

in perfect agreement with eq. (27). Quod erat demonstrandum.

Problem 2.60:

The conducting shell is neutral on the whole, but its inner and outer surfaces carry charges

induced by the point charge inside the inner cavity. Specifically, for the point charge q being

at the center of the shell, there is induced charge −q uniformly distributed over the inner

surface of the shell, and also induced charge +q uniformly distributed over the outer surface;

in terms of surface charge densities,

σinner = − q

4πa2
= const, σouter = +

q

4πb2
= const. (35)

But when we move the point charge to ∞ through a tiny hole in the shell, the induced

charge −q on the inner surface flows towards the hole, then flows along the hole’s surface to

the outer surface, and eventually cancels the +q charge that used to be there. By the time

the point charge approaches the ∞, the induced charges on both surfaces of the shell vanish

altogether.

By the energy conservation, the work of moving the point charge to ∞ is due to removal

of the potential energy of interactions between the point charge with the induced charges on

the shell, and also between the induced charges themselves. In terms of the net potential

energies,

W = U [point charge by itself] − U [point charge plus induced charges]

= −U [everything except point charge’s self-interaction]
(36)

where the second line stems from the point charge’s self-interaction not caring whether that

charge is inside the shell or by itself at ∞.
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Let me give two ways for calculating the energy difference (36). Method #1:

W = −U + U self
point charge = −1

2

′
∑

i,j

Qi × Vj@(i) (37)

where i runs over the 3 charged objects in the system — the point charge, the inner surface

of the shell, and the outer surface, — and the prime on the sum indicates skipping the

self-interaction of the point charge but including the self-interactions of the shell’s surfaces.

Specifically,

W = −
(

Qinner × Vpoint(a) +Qouter × Vpoint(b) + Qouter × Vinner(b)

+
1

2
Qinner × Vinner(a) +

1

2
Qouter × Vouter(b)

)

.

(38)

In this sum,

Qinner × Vpoint(a) = − q2

4πǫ0
× 1

a
,

Qouter × Vpoint(b) = +
q2

4πǫ0
× 1

b
,

Qouter × Vinner(b) = − q2

4πǫ0
× 1

b
,

Qinner × Vinner(a) = +
q2

4πǫ0
× 1

a
,

Qouter × Vouter(a) = +
q2

4πǫ0
× 1

b
,

(39)

so assembling all the terms together, we get

W = − q2

4πǫ0
×
(−1

a
+

+1

b
+

−1

b
+

1

2
× +1

a
+

1

2
× 1

b

)

= +
q2

4πǫ0
×
(

1

2a
− 1

2b

)

. (40)

Note the positive sign of this net work: putting the charge inside the conducting shell reduces

the overall potential energy, so removing the charge back to ∞ increases the energy back to

its original value.
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Method #2: Use

U =
ǫ0
2

∫∫∫

whole
space

E2 d3Vol, (41)

hence the difference between the energy of an isolated point charge and a point charge inside

the conducting shell is

W =
ǫ0
2

∫∫∫

whole
space

(

E2
standalone(r) − E2

in shell(r)
)

d3Vol. (42)

For simplicity, instead of moving the charge from inside the shell to ∞, let’s keep the charge

fixed at the origin while we move the shell in the opposite direction: from centered at the

origin to centered at the ∞. For the shell centered on the charge,

E2(r) =



































(

q

4πǫ0

1

r2

)2

outside the shell, r > b,

0 within the shell, a < r < b,

(

q

4πǫ0

1

r2

)2

inside the shell, r < a,

(43)

while after we remove the shell to infinity

E2(r) =

(

q

4πǫ0

1

r2

)2

everywhere. (44)

Consequently, subtracting the E2 for the two situations at similar positions r relative to the

point charge, we have

(

E2
standalone(r) − E2

in shell(r)
)

=











(

q

4πǫ0

1

r2

)2

within the shell, a < b < b,

0 everywhere else.

(45)
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Hence, plugging this difference into the integral (42), we have

W =
ǫ0
2

∫∫∫

within the
shell only

(

q

4πǫ0

1

r2

)2

× d3Vol

=
q2

32π2ǫ0
×

b
∫

a

1

r4
× 4πr2 dr

=
q2

8πǫ0
×
(

1

a
− 1

b

)

.

(46)

Problem 2.43:

Consider a long piece (length L ≫ a, b) of the coaxial tubes in question. Suppose the inner

tube has charge +Q while the outer tube has charge −Q (both, within the length L). Then,

by the Gauss Law, the electric field vanishes inside the inner tube or outside the outer tube,

while between the tubes the field is

E =
Q/L

2πǫ0

ŝ

s
(47)

where s is the cylindrical radial coordinate. Integrating this field between the two tubes, we

obtain the potential difference

V = Vouter − Vinner =

b
∫

a

ds ŝ · E =
Q/L

2πǫ0
×

b
∫

a

ds

s
=

Q/L

2πǫ0
× ln

b

a
. (48)

Note that this potential difference — i.e., the voltage on the capacitor — is proportional to

the stored charge Q, so we can recast this formula in terms of the capacitance C:

1

C
=

V

Q
=

1/L

2πǫ0
× ln

b

a
, (49)

hence

C = L× 2πǫ0
ln(b/a)

. (50)

Numerically, 2πǫ0 = 56 · 10−12 F/m = 56 pF/m, so the capacitance per unit length of the
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two coaxial tubes is

C

L
=

56 pF/m

ln(b/a)
. (51)

The non-textbook problem:

(a) In the serial circuit

C1 C2

the same time-dependent current I(t) flows through both capacitors, so they acquire the

same charge Q =
∫

I dt. Likewise, when the capacitors discharge, the same charge flows

from both capacitors, so the charge flowing through the outside wire is Q rather than 2Q.

As to the voltages of the charged capacitors, the first capacitor has V1 = Q/C1, the second

capacitor has V2 = Q/C2, and in the serial circuit these two voltages add up to the net

voltage between the outside wires

Vnet = V1 + V2 = Q×
(

1

C1
+

1

C2

)

. (52)

Hence, the equivalent capacitance of the serial circuit is

Cserial =
Q

Vnet
=

(

1

C1
+

1

C2

)−1

=
C1C2

C1 + C2
. (53)

On the other hand, in the parallel circuit

C1

C2

The currents through the two capacitors are separate so they acquire separate charges Q1

and Q2. Moreover, when the capacitors discharge, their charges flow separately through the

12



outside wires, thus

Qnet = Q1 + Q2 . (54)

Also, in the parallel circuit the voltages on the two capacitors are equal to each other and

to the outside voltage,

V1 = V2 = V. (55)

Consequently, the charges of the two capacitors are Q1 = C1×V , Q2 = C2×V , and the net

charge is

Qnet = Q1 + Q2 = (C1 + C2)× V. (56)

Thus, the equivalent capacitance of the parallel circuit is

Cparallel =
Qnet

V
= C1 + C2 . (57)

For more complicated — but finite — capacitor circuits, the equivalent capacitance

follows by recursive application of eqs. (53) and (57) via the subcircuit rule: Any subcircuit

may be replaced with a single capacitor of the same equivalent capacitance. For example, in

the three-capacitor circuit

C2

C1 C3
(58)

we may replace the serial subcircuit of C2 and C3 with a single capacitor

C1 C23
C23 =

C2C3

C2 + C3

and then the whole circuit simplifies to a parallel circuit of net capacitance

Cnet = C1 + C23 = C1 +
C2C3

C2 + C3
(59)
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(b) Now consider the infinite ladder circuit

X

Y

C2

C1

C2

C1

C2

C1

A

B

The key to solving this circuit is its very infinity, which means that the sub-circuit comprising

everything to the right of the first capacitor pair — i.e., everything to the right of points A

and B — is completely equivalent to the whole circuit. Consequently, the equivalent capacity

of the complete circuit between points X and Y is equal to the equivalent capacity of the

subcircuit to the right of A and B,

CXY = CAB . (60)

To make use of this relation, we need an independent relation between the CCY and

CAB capacitances, and we can get it from the subcircuit rule. Indeed, let’s replace the entire

infinite subcircuit to the right of the points A and B with a single capacitor of capacitance

CAB, whatever that capacitance happens to be, thus

X

Y

C2

C1 CAB

A

B

(61)

The resulting 3-capacitor circuit looks just like the example (58) I made at the end of part

(a), so its equivalent capacitance obtains similarly to eq. (59), namely

CXY = C1 +
C2CAB

C2 + CAB
. (62)

Together, eqs. (60) and (62) give us two algebraic relations between two unknown ca-

pacitances CXY and CAB. To solve them for the CXY we plug eq. (60) into eq. (62) to
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obtain

CXY = C1 +
C2CXY

C2 + CXY
, (63)

hence

(CXY − C1)× (C2 + CXY ) = C2CXY , (64)

and therefore

C2
XY − C1 × CXY − C1C2 = 0. (65)

This quadratic equation has a unique positive root, thus

CXY =
C1 +

√

C2
1 + 4C1C2

2
. (66)

In particular, for C1 = 1µF and C2 = 2µF the answer is CXY = 2µF.

Problem 3.3:

Preamble: The way various differential operators work in the spherical or cylindrical co-

ordinates is explained in the textbook section §1.4. Specifically, the Laplacian operator in

such coordinates acts according to the textbook equations (1.73) and (1.82), namely

△F (r, θ, φ) =
1

r2
× ∂

∂r

(

r2 × ∂F

∂r

)

+
1

r2 sin θ
× ∂

∂θ

(

sin θ × ∂F

∂θ

)

+
1

r2 sin2 θ
× ∂2F

∂φ2
, (1.73)

△F (s, φ, z) =
1

s
× ∂

∂s

(

s× ∂F

∂s

)

+
1

s2
× ∂2F

∂φ2
+

∂2F

∂z2
. (1.82)

In particular, for the spherically symmetric functions which in spherical coordinates depend

only on the radius r,

△F (r only) =
1

r2
× d

dr

(

r2 × dF

dr

)

=
d2F

dr2
+

2

r
× dF

dr
. (67)

Likewise, for the axially symmetric functions which in cylindrical coordinates depend only

15



on s,

△F (s only) =
1

s
× d

ds

(

s× dF

ds

)

=
d2F

ds2
+

1

s
× dF

ds
. (68)

(a) Suppose a spherically symmetric potential V (r only) obeys the Laplace equation△V (r) ≡
0, hence in light of eq. (67)

△V (r) = V ′′(r) +
2

r
× V ′(r) = 0. (69)

To find the general solution of this equations, we start with the derivative V ′(r) = dV/dr

which obeys

dV ′

dr
+

2V ′

r
= 0. (70)

To solve this first-order equation, we recast it in terms of the differentials dV ′ and dr, thus

dV ′

V ′
= −2

dr

r
,

d
(

lnV ′
)

= d
(

−2 ln r
)

,

lnV ′(r) = const − 2 ln(r),

V ′(r) =
const

r2

(71)

Let’s call the constant in the last formula here −A.

Now, given the V ′(r), solving for the V (r) itself is just the matter of integration:

dV

dr
=

−A

r2
,

V (r) =

∫ −A

r2
dr =

A

r
+ B,

(72)

where B some other constant.

Altogether, the most general spherically symmetric potential — in any spherical shell

without the electric charges in it — has form

V (r) =
A

r
+ B (73)

for some constants A and B.
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(b) Now consider an axially symmetric electric potential V (s). In any interval of S where

there are no electric charges, the potential obeys the Laplace equation △V (s) ≡ 0, or in

light or eq. (68),

△V (s) = V ′′(s) +
1

s
× V ′(s) = 0. (74)

To find the most general solution to this equation, we first rewrite it as a first-order equation

for the derivative V ′(s) = dV/ds,

dV ′

ds
+

V

s
= 0. (75)

In terms of the differentials dV ′ and ds, this equation becomes

dV ′

V ′
= −ds

s
,

d
(

lnV ′
)

= d
(

− ln s
)

,

lnV ′(s) = − ln s + const,

V ′(s) =
const

s
.

(76)

It remains to give this constant a name — say A — and integrate to get the V (s) itself:

V (s) =

∫

V ′(s) ds =

∫

A

s
ds = A× ln(s) + const. (77)

Altogether, the most general axi-symmetric potential — in the interval of s where there are

no electric charges — have form

V (s) = A× ln(s) + B (78)

for some constants A and B.
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Problem 3.1:

All the hard calculations you need for this problem are explained in detail in my notes on

electrostatic theorems, pages 6–9. In particular, eqs. (30) and (31) give the mean potential

over a sphere due to a point charge: For the charge outside the sphere

Vmean =
Q

4πǫ0
× 1

rq
= V (center) (79)

while for the charge inside the sphere

Vmean =
Q

4πǫ0
× 1

R
6= V (center). (80)

Note however that for the charge inside the sphere, its contribution to the average po-

tential does not depend on rq as long as rq < R: it does not matter where exactly we put

the charge inside the sphere as long as it’s inside. Consequently, for any number of charges

inside the sphere — or for any continuous charge inside the sphere — their net contribution

to the average potential is simply

Vmean =
Qnet

4πǫ0R
. (81)

At the same time, the contribution of any outside charges to the average potential equals to

the contribution of the same charges to the potential at the center. Thus altogether,

Vmean[sphere] = V due to outside charges(center) +
Qnet

inside

4πǫ0R
. (82)

Problem 3.4:

First, let me relate the average electric field vector over a sphere to the averaged potential

over the same sphere. To set up the notations, let c be the radius-vector of the sphere’s
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center. Then a generic point on the sphere’s surface is located at

r = c + Rn (83)

where R is the sphere’s radius while n is a generic unit vector. Averaging the potential over

the sphere is equivalent to averaging over the direction of that unit vector, thus

Vavg(c, R) =
1

4πR2

∫∫

sphere

V (r) d2A =
1

4π

∫∫

V (c+Rn) d2Ω(n) (84)

where d2Ω(n) is the infinitesimal solid angle for the direction of n. Similarly, for the electric

field, the average over the sphere amounts to

Eavg(c, R) =
1

4πR2

∫∫

sphere

E(r) d2A =
1

4π

∫∫

E(c+Rn) d2Ω(n). (85)

Note that here we average the electric field as a vector — that is, average each component

separately — instead of averaging the magnitude E = |E|. For the average magnitude, this

problem simply would not work!

The key to this problem is the relation between the average field vector and the average

potential: The average field is simply (minus) the gradient of the average potential WRT

the center location c:

Eavg(c, R) = −∇cVavg(c, R) = −∂Vavg
∂cx

x̂ − ∂Vavg
∂cy

ŷ − ∂Vavg
∂cz

ẑ (86)

where all the partial derivatives are taken at fixed sphere’s radius R. Indeed, in the integral

Vavg(c, R) =
1

4π

∫∫

V (c+Rn) d2Ω(n) (87)

the variables c = (cx, cy, cz) are completely independent from R or from the integrations

variables parametrizing the direction n (for example, the two angular coordinates θ and

φ). In particular, the ranges of the integration variables are completely independent from
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(cx, cy, cz). Consequently, the derivatives of the integral WRT to the (cx, xy, cz) are equal to

the integrals of the derivatives,

∂

∂cx
Vavg(c, R) =

1

4π

∫∫

∂V (c+Rn)

∂cx
d2Ω(n),

∂

∂cy
Vavg(c, R) =

1

4π

∫∫

∂V (c+Rn)

∂cy
d2Ω(n),

∂

∂cz
Vavg(c, R) =

1

4π

∫∫

∂V (c+Rn)

∂cz
d2Ω(n),

or in vector notations,

∇cVavg(c, R) =
1

4π

∫∫

∇cV (c+Rn) d2Ω(n),

(88)

where all the partial derivatives on the RHS are taken for fixed n before we integrate. Thus,

at the differentiation time, the shift vector r − c = Rn is held constant, so the derivatives

are simply

(

∂V (r = c+Rn

∂cx

)fixed

Rn

=
∂V

∂x

∣

∣

∣

∣

@r=c+rn

, (89)

and likewise for the y and z derivatives. In vector notations, this means

(

∇cV (c+Rn)
)fixed

Rn

= ∇V |
r=c+Rn

= −E(r = c+Rn) (90)

since the ordinary gradient of the potential is simply (minus) the electric field vector. Con-

sequently, plugging this formula back into the integral (88), we arrive at

∇cVavg(c, R) = − 1

4π

∫∫

∇cE(r = c+Rn) d2Ω(n) = −Eavg(c, R). (91)

This completes the proof of eq. (86).
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(a) Now that we have eq. (86), part (a) of the problem follows trivially from the mean value

theorem for the potential: If there are no charges inside a sphere of radius R, then

Vavg(c, R) = V@(the center c). (92)

Indeed, given eqs. (86) and (92), the mean electric field vector over the sphere is

Eavg(c, R) = −∇cVavg(c, R) = −∇cV (c) = +E(c). (93)

(b) Now suppose there are some charges inside the sphere. As we saw in problem 3.1, the

contribution of such charge to the mean potential on the sphere does not depend on where

they are placed inside the sphere, as long as they are inside it,

V (c, R)[due to inside charges] =
Qnet

inside

4πǫ0R
. (94)

So if we move the center of the sphere just a little bit and do not cross any charges, this

mean potential is not going to change at all. Consequently, by eq. (86),

Eavg(c, R)[due to inside charges] = −∇cV (c, R)[due to inside charges] = 0, (95)

the inside charges do not contribute to the mean electric field vector.

More generally, suppose there are charges both inside and outside the sphere, but there

are no charges right at the spherical surface itself. In this case,

Vavg(c, R) = V due to outside charges(c) +
Qnet

inside

4πǫ0R
, (96)

and if we displace the center c by an infinitesimal dc, the net charge inside the sphere would

not change, dQnet
inside = 0. Consequently,

∇cVavg(c, R) = ∇V due to outside charges(c) + 0, (97)

and hence the mean electric field vector on the sphere equals to the electric field at the center

due to the outside charges only.
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However, if there are any charges right at the spherical surface — or continuous charges

on lines, surfaces, or volumes crossed by the sphere — then even an infinitesimal motion of

the sphere’s center may change the net charge inside the sphere. Consequently, the mean

potential due to the inside charges would change with the sphere’s displacement, and by

eq. (86) this would contribute to the mean electrical field vector. Thus, the charges strictly

inside the sphere do not contribute to the mean electric field vector, but the charges right at

the spherical surface do contribute.
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