
PHY–352 K. Solutions for problem set #5.

Problem 3.50:

(a) The electric fields E1(r) and E2(r) due to each charge distribution obey the respective

equations

E1(r) = −∇V1(r), ∇ · E1(r) =
ρ1(r)

ǫ0
,

E2(r) = −∇V2(r), ∇ · E2(r) =
ρ2(r)

ǫ0
.

(1)

Consequently,

E1 · E2 = −E1 · ∇V2 = −∇ · (V2E1) + V2∇ · E1 = −∇ · (V2E1) − V2ρ1
ǫ0

, (2)

and in likewise manner

E1 · E2 = −∇ · (V1E2) − V1ρ2
ǫ0

. (3)

Comparing the last two equations gives us

V1ρ2 − V2ρ1 = ǫ0∇ · (V2E1 − V1E2), (4)

hence after integration over some volume V and applying the Gauss theorem
∫∫∫

V

V1ρ2 d
3Vol−

∫∫∫

V

V2ρ1 d
3Vol = ǫ0

∫∫∫

V

∇·(V2E1−V1E2)d
3Vol = ǫ0

∫∫

S

(V2E1−V1E2)·d2A

(5)

where the surface S is the boundary of the volume V. Suppose V is a ball of very large

radius R so S is the spherical surface of that radius. In the limit of R → ∞, the potentials

V1 and V2 scale as 1/R, the electric fields E1 and E2 scale as 1/R2, the sphere’s area scales

as R2, so the surface integral on the RHS of eq. (5) scales as 1/R and eventually vanishes

for R = ∞. At the same time, volume integrals on the LHS of eq. (5) expand to integrals

over the whole space, thus
∫∫∫

whole

space

V1ρ2 d
3Vol =

∫∫∫

whole

space

V2ρ1 d
3Vol , (6)

quod erat demonstrandum.
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(b) In the Green’s Reciprocity Theorem (6), the two charge distributions ρ1(r) and ρ2(r) do

not have to coexist. Instead, we may first turn on just the ρ1(r) distribution, measure the

potential V1(r) it creates and record it for later analysis, then turn off the ρ1(r) distribution

and turn on the ρ2(r) distributions, measure and record the potential V2(r) it creates, then

turn off the second distribution, and finally calculate the integrals (6) from the recorded

measurements. But however we do it, the integrals would have to come out equal.

For the problem at hand, we are going to use the distributions which are definitely not

simultaneous. The first distribution comprises surface charges on both conductors, such that

the net charge of the conductor a is Q while the conductor b is neutral on the whole (but has

σ 6= 0 due to induced charges). We do not know the details of the surface charge densities

for either conductor, but we know that the net potential V1(r) they create is constant over

each conductor, namely Vaa over the conductor a and Vab over the conductor b.

Likewise, the second distribution also goes over the two conductors’ surfaces, but this

time the conductor b has net charge Q while the conductor a is neutral on the whole. Again,

we do not know the details of the surface charge densities, but we do know that the net

potential V2(r) they create is constant over each conductor, namely Vba over the conductor

a and Vbb over the conductor b.

Now let’s calculate the integrals in eq. (6). For each distribution, the charges are confined

to the two conductor’s surfaces, and the potential is locally constant over each surface, hence
∫∫∫

whole

space

V1ρ2 d
3Vol =

∫∫

cond. a

V1σ2 d
2A +

∫∫

cond. b

V1σ2 d
2A

= Vaa ×
∫∫

cond. a

σ2 d
2A + Vab ×

∫∫

cond. b

σ2 d
2A

= Vaa ×Qnet
a [distribution2] + Vab ×Qnet

b [distribution2]

= Vaa × 0 + Vab ×Q.

(7)

Similarly,
∫∫∫

whole

space

V2ρ1 d
3Vol = Vba ×Q + Vbb × 0. (8)

Plugging these two formulae into the Green’s Reciprocity Theorem (6), we immediately
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obtain

Vaa × 0 + Vab ×Q = Vba ×Q + Vbb × 0 (9)

and therefore

Vab = Vba , (10)

quod erat demonstrandum.

Problem 3.7:

Both charges above the plane give rise to the mirror-image charges below the plane. Alto-

gether, the electric field above the plane looks like the field due to 4 point charges as shown

on the picture below

xy plane

z

+3d +q

−3d −q

+d −2q

−d +2q

(11)

Consequently, the force on the top charge is the net Coulomb force form all the other charges

— including the second real charge and both image charges. Thus,

F net
z =

−2q2

4πǫ0
× 1

(2d)2
+

+2q2

4πǫ0
× 1

(4d)2
+

−q2

4πǫ0
× 1

(6d)2

=
q2

4πǫ0 d2

(

−2

4
+

2

16
− 1

36

)

= −29

72
× q2

4πǫ0 d2
,

(12)

where the − sign indicates the downward direction of the net force.
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Problem 3.10:

(a) For any collection of charges above the ground — which we take to be a flat conducting

plane — we may get the net electric field above the ground (and only above the ground)

by the image charge method. We simply combine the Coulomb fields of the actual charges

above the ground with Coulomb fields of their mirror images below the ground.

This works not only for the point charges but also for the line charges, surface charges,

etc. In particular, for a uniformly charged wire at height h above the ground, the mirror

image is simply a ‘wire’ of opposite charge density −λ located at depth h below the ground

(i.e., at z = −h), and the net field above the ground is simply the combined field of the two

wires.

For a single uniformly charged wire, the electric potential is

V (s) = − λ

2πǫ0
ln(s) + const = − λ

4πǫ0
× ln(s2) + const (13)

where s is the distance from the wire. For the wire in question

V real
wire(y, z) = − λ

4πǫ0
× ln

(

y2 + (z − h)2
)

+ const,

while its image below the ground creates the potential

V image
wire (y, z) = +

λ

4πǫ0
× ln

(

y2 + (z + h)2
)

+ const.

Adding up the two potentials, we arrive at

Vnet(y, z) = V real
wire(y, z) + V image

wire (y, z)

=
λ

4πǫ0
×
(

ln(y2 + (z + h)2) − ln(y2 + (z − h)2)
)

+ const

=
λ

4πǫ0
× ln

(

y2 + (z + h)2

y2 + (z − h)2

)

+ const.

(14)

In principle, the constant here can be anything — it depends on the reference point for the

potential, — but if we want the ground-level potential to be zero, then we should set the
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constant term to zero. Thus,

for any z ≥ 0, V (y, z) =
λ

4πǫ0
× ln

(

y2 + (z + h)2

y2 + (z − h)2

)

; (15)

indeed, by inspection this potential vanishes for z = 0.

(b) Above the ground, the potential is given by the formula (15), and the electric field follows

from its gradient. Below the ground, there is no electric field, and the potential is zero. The

discontinuity between the electric fields above and below the ground is due to the surface

charge density σ(x, y) — or in our case, simply σ(y) — which obtains as

σ = ǫ0 × discE⊥ = ǫ0 × E⊥(z → +0) = −ǫ0

(

∂V

∂z

)

@z→+0

. (16)

In other words, starting with the potential (15) above the ground, take its derivative WRT

z, evaluate it for z = 0, and multiply by −ǫ0. Thus,

∂V

∂z
=

λ

4πǫ0
×
(

2(z + h)

y2 + (z + h)2
− 2(z − h)

y2 + (z − h)2

)

, (17)

which for z = 0 becomes

(

∂V

∂z

)

z=0

=
λ

4πǫ0
× 4h

y2 + h2
. (18)

Consequently, the surface charge density at the ground level is

σ(y) = −λ

π
× h

y2 + h2
. (19)
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Problem 3.11:

(a) The two conducting planes acts as mirrors for the charges. The two mirrors joined at

90◦ angle create 3 images of any object: one image in the mirror A, one image in the mirror

B, and one image-of-the-image. Note that the image in B of the image in A is exactly at

the same place as the image in A of the image in B, so there is only one image-of-the-image,

and there is no need to consider images-of-images-of-images, etc., etc. Altogether, we have

4 charges

x

y

+q−q

+q −q

(20)

Note the signs of these charges: the images in a single plane have opposite signs to the

original charge, while the image-of-the-image has charge +q due to double sign flip.

The net charge configuration — 1 real charge plus 3 image charges — obviously obeys

the Poisson equation for the upper right quadrant as well as the V → 0 asymptotic condition

for r → ∞. To show that it obeys the boundary conditions V = 0 on the two conducting

half-planes, we simply use the symmetries of the 4 charge system extended to the whole

space, namely (1) x → −x, y → +y, Q → −Q, and hence V → −V , and (2) x → +x,

y → −y, Q → −Q, and hence V → −V . By these symmetries V (x, 0) = 0 for any x and

V (0, y) = 0 for any y, in perfect agreement with the boundary conditions.

Of course, there are no actual image charges beyond the conducting planes, there are

only the surface charges on the planes themselves. But in the upper right quadrant between

the planes, the electric field is the same as if there were point image charges instead of the

surface charges on the planes.
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(b) The net force on the real point charge is Q×E due to all the other charges in the systems,

namely the surface charges on the ‘mirror’ planes. But since the net electric field due to all

those surface charges looks exactly like the Coulomb field of the 3 image charges, the net

force on the real point charge is simply the net Coulomb force from the 3 image charges:

Fnet = F1 + F2 + F3 , (21)

F1 = − q2

4πǫ0

ŷ

(2b)2
, (22)

F2 = − q2

4πǫ0

x̂

(2a)2
, (23)

F3 = +
q2

4πǫ0

(2a)x̂+ (2b)ŷ
(

(2a)2 + (2b)2
)3/2

, (24)

In components,

F net
x = − q2

16πǫ0

(

1

a2
− a

(a2 + b2)3/2

)

, (25)

F net
y = − q2

16πǫ0

(

1

b2
− b

(a2 + b2)3/2

)

. (26)

(c) The force (26) performs work when the real charge moves around. At the same time, the

image charges mirror the real charge’s motion, but that does not take any additional forces,

hence no extra work. Thus, the net infinitesimal work is simply

dW = F · drreal = Fx da + Fy db

= − q2

16πǫ0

(

da

a2
+

db

b2
− ada+ bdb

(a2 + b2)3/2

)

= +
q2

16πǫ0
× d

(

1

a
+

1

b
− 1√

a2 + b2

)

.

(27)

Integrating this work as the charge moves from infinity to its final position at (x = a, y = b),

we find the potential energy

U = −Wnet = − q2

16πǫ0
×
(

1

a
+

1

b
− 1√

a2 + b2

)

. (28)

Note: this potential energy is 4 times smaller than the naive potential energy of 4 point
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charges,

Unaive = − q2

4πǫ0
× 1

2a
× 2pairs − q2

4πǫ0
× 1

2b
× 2pairs +

q2

4πǫ0
× 1

2
√
a2 + b2

× 2pairs

= − q2

4πǫ0
×
(

1

a
+

1

b
− 1√

a2 + b2

)

.

(29)

But this naive energy equals to the integral over the electric field square

Unaive =
ǫ0
2

∫∫∫

whole
space

E2 d3Vol (30)

over the whole space, while in reality the electric field of the 4 charges exists only in the

quadrant between the planes; outside that quadrant E = 0. Thus physically, we should

integrate (30) only over the top right quadrant, which leads to the real potential energy

being only a quarter of the naive energy,

U =
1

4
Unaive . (31)

(d) Finally, consider what happens when the two conducting planes intersect at an angle

α 6= 90◦. In this case, the image in plane B of the image in plane A is at a different place

than the image in plane A of the image in plane B. And beyond these two images-of-images,

there will be images of images of images, etc., etc..

For a rational angle α — or rather, for α being a rational fraction of 360◦ — the images

of images of images . . . would eventually coincide, and we end up with a finite set of image

charges. For example, for α = 360◦/(2N) (N being a whole number), we end up with 2N

charges altogether, including 1 real charge and 2N − 1 image charges. Among the image

charges, N would have charge −q and N − 1 charge +q.

In a situation like this, the force on the real charge and the potential energy obtain along

the lines of parts (b) and (c) of this problem (for α = 90◦ = 360◦/4). But I am not doing it

here in any detail, and I do not expect you to do it in your homework.
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On the other hand, for an irrational α — or rather irrational α/360◦ — the images of

images of images . . . of the original charge never converge to a finite set. Instead, we get an

infinite set of image charges forming an irrational pattern that’s useless for any calculations.

For this sorry situation, the image charge method does not work.

Problem 3.8:

Preamble: Consider a point charge Q outside a grounded conducting sphere. The potential

V (r) for this system obeys the Poisson equation

∆V (r) = −Q

ǫ0
δ(3)(r− rq) for |r| > R, (32)

the boundary condition

V (r, θ, φ) = 0 for r = R, (33)

and the asymptotic condition

V (r, θ, φ) → 0 for r → ∞. (34)

The image charge method — with an image charge Qi at some location ri inside the sphere

— produces potential

V (r) =
Q

4πǫ0
× 1

|r− rq|
+

Qi

4πǫ0
× 1

|r− ri|
(35)

which automatically satisfies the Poisson equation (32) (for the outside of the sphere only)

and the asymptotic condition (34). All we need to check is the boundary condition (33) for

the potential (35), and the textbook claims that it is satisfied for the image charge

Qi = −R

a
×Q (36)

located at distance

b =
R2

a
(37)
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from the sphere’s center and on the same ray (from the center) as the real charge:

R

real charge

image charge

b

a
(38)

(a) Our first task is to verify that the potential (35) indeed vanishes all over the sphere’s

surface for the image charge (36) located according to eqs. (37) and (38). Let’s pick a generic

point P on the sphere’s surface. Since the real charge and the image charge sit on the same

ray (from the sphere’s center), the radius vector rp of the point P makes the same angle θ

with the radius vectors rq and ri of the two charges. Consequently,

|rp − rq|2 = R2 + a2 − 2Ra cos θ and |rp − ri|2 = R2 + b2 − 2Rb cos θ (39)

for the same angle θ. Moreover, since b = R2/a we have

|rp−ri|2 = R2 +
R4

a2
− 2R3

a
cos θ =

R2

a2
×
(

a2 +R2 − 2Ra cos θ
)

=
R2

a2
×|rp−rq|2 (40)

and hence

Qi

|rp − ri|
=

a

R
× Qi

|rp − rq|
. (41)

Finally, in light of eq. (36) for the value of the image charge Qi.

a

R
×Qi = −Q =⇒ Qi

|rp − ri|
= − Q

|rp − rq|
, (42)

which means that for any point P on the sphere (and only on the sphere) the potential

vanishes,

V (P ) =
1

4πǫ0

(

Q

|rp − rq|
+

Qi

|rp − ri|

)

= 0. (43)

Quod erat demonstrandum.
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(b) Let’s use spherical coordinates (r, θ, φ) where the θ = 0 axis points towards the real and

the image charges. Then, outside the sphere, the potential is given by

V (r, θ, φ) =
Q

4πǫ0
×
(

1√
a2 + r2 − 2ra cos θ

− (R/a)
√

(b2 + r2 − 2rb cos θ

)

. (44)

The surface charge density on the conducting sphere follows from the normal (i.e., radial)

electric field right outside the sphere,

σ(θ, φ) = ǫ0Er(r, θ, φ) = −ǫ0
∂V (r, θ, φ)

∂r
@ r = R + 0. (45)

In light of eq. (44),

−ǫ0
∂V

∂r
= +

Q

4π

(

r − a cos θ

[a2 + r2 − 2ra cos θ]3/2
− R

a
× r − b cos θ

[b2 + r2 − 2rb cos θ]3/2

)

, (46)

so let’s evaluate this formula for r = R. Thanks to b = R2/a,

b2 + R2 − 2Rb cos θ =
R2

a2
×
(

a2 +R2 − 2Ra cos θ
)

, (47)

R − b cos θ =
R

a
×
(

a− R cos θ
)

, (48)

R

a
× r − b cos θ

[b2 +R2 − 2Rb cos θ]3/2
=

a

R
× a−R cos θ

[a2 +R2 − 2Ra cos θ]3/2
, (49)

and therefore

−ǫ0
∂V

∂r

∣

∣

∣

∣

r=R

=
Q

4π
× 1

[a2 +R2 − 2Ra cos θ]3/2
×

×
(

(R− a cos θ) − a

R
× (a− R cos θ) =

R2 − a2

R

)

.

(50)

Thus altogether, the charge density on the sphere’s surface is

σ(θ, φ) = − Q

4π
× a2 −R2

R
× 1

[a2 +R2 − 2Ra cos θ]3/2
. (51)

Now let’s integrate this charge density to get the net charge induced on the sphere. In
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spherical coordinates,

Qind =

∫∫

sphere

σ d2A =

2π
∫

0

dφ

θ
∫

0

dθ × R2 sin θ × σ(θ, φ) = 2πR2

+1
∫

−1

d(cos θ) σ(cos θ), (52)

where the last equality follows from the φ-independence of the charge density and d(cos θ) =

− sin θ dθ. For the charge density as in eq. (51),

Qind = 2πR2

+1
∫

−1

dc
−Q(a2 − R2)

4πR
× 1

[R2 + a2 − 2Rac]3/2

〈〈where c stands for cos θ 〉〉

= −QR(a2 −R2)

2

+1
∫

−1

dc

[R2 + a2 − 2Rac]3/2

= −QR(a2 −R2)

2

c=+1
∫

c=−1

1

Ra
d

(

1√
R2 + a2 − 2Rac

)

= −Q(a2 −R2)

2a
×
[

1√
R2 + a2 − 2Ra

− 1√
R2 + a2 + 2Ra

]

,

(53)

where the expression in [· · ·] evaluates to

[· · ·] =

[

1

|a−R| − 1

a+R

]

=
2R

a2 − R2
(for R < a). (54)

Consequently,

Qind = −Q(a2 −R2)

2a
× 2R

a2 − R2
= −Q× R

a
, (55)

— which is exactly the same as the image charge Qi. Thus, similar to the conducting plane,

the net induced charge on the grounded spherical surface agrees with the apparent image

charge!
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(c) The net force on the real charge outside the grounded sphere is F = QE where E is due

to the induced surface charges. But outside the sphere E due to surface charges is the same

as the Coulomb field of the image charge, thus the magnitude of the force is

|F | =
|QQi|
4πǫ0

× 1

(a− b)2
=

Q2

4πǫ0
× R

a
× a2

(a2 −R2)2
=

Q2

4πǫ0
× aR

(a2 −R2)2
, (56)

and its direction is towards the sphere’s center. As the real charge is brought from the ∞
to a finite distance a from the sphere, this force performs positive work

W =

∞
∫

a

F (a′) da′ =
Q2

4πǫ0

∞
∫

a

Ra′ da′

(a′2 − R2)2

=
Q2

4πǫ0
× R

2

a′=∞
∫

a′=a

d(a′2 − R2)

(a′2 −R2)2

=
Q2R

8πǫ0
× 1

a2 − R2
.

(57)

which means the potential energy of the real point charge outside of the grounded sphere is

U = −W = − Q2

8πǫ0
× R

a2 − R2
. (58)

PS: Curiously,

U =
1

2
× QQi

4πǫ0(a− b)
=

1

2
Unaive . (59)

That is, the true potential energy is 1
2 of the naive potential energy one might expect for the

two point charges, one real and one image. The reason the true potential energy is less (in

absolute value) than the naive energy is clear: while it take work to move the real charge,

the image charge moves by itself without any extra work. What’s not so clear is the ratio

U/Unaive is simply 1
2 , just like for the conducting plane. For the plane, that factor 1

2 follows

from the upside-downside symmetry, but the sphere does not have any obvious inside-outside

symmetry, so why the similar 1
2 factor?
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It turns out, the conducting sphere does have a non-obvious inside-outside symmetry

r → R2/r, it’s a special case of the conformal symmetry of the electromagnetic field. But

the working of this symmetry is way outside the undergraduate class material, so let me

stop here. In any case, I do not expect you to offer any explanations of U = 1
2Unaive in your

homework.

Problem 3.9:

If the conducting sphere is not grounded, then the boundary condition for the potential on

the sphere’s outer surface is V = const but not necessarily V = 0. In terms of the surface

charge density, this calls for

σungrounded(θ, φ) = σgrounded(θ, φ) + const, (60)

where the constant is adjusted to keep the overall charge of the sphere whatever it was before

we brought in the outside point charge, for example Qnet = 0.

In terms of the electric field outside the sphere, the constant term in the surface charge

density is equivalent to the same net charge at the center. In terms of the image charge

method, this means that the surface charges induced on the ungrounded conducting sphere

by the outside point charge are equivalent to two point charges inside the sphere: the image

charge Qi = −(R/a)Q located similarly to the image in the grounded sphere, and the central

charge Qc = −Qi = +(R/a)Q located at the center. Altogether, we have

R

real charge Q

image charge Qi = −R
aQ

b

a

central charge Qc = −Qi = +R
aQ

(61)

This picture is for the neutral un-grounded sphere. For the charged sphere, the central

charge would be Qc = Qnet −Qi instead of simply Qc = −Qi.
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Now consider the net force on the real point charge Q. As usual, F = QE [due to all

other charges], which amounts to F = QE[due to Qi and Qc]. In other words, its the net

Coulomb force between Q and the image+central charges,

F =
QQi

4πǫ0(a− b)2
+

QQc

4πǫ0 a2
= − Q2R

4πǫ0a

(

1

(a− b)2
− 1

a2

)

, (62)

where the minus sign indicates the direction towards the sphere’s center. After a bit of

algebra, we obtain

1

(a− b)2
− 1

a2
=

R2(2a2 −R2)

a2(a2 − R2)2
, (63)

hence

F = − Q2

4πǫ0
× R3(2a2 −R2)

a3(a2 − R2)2
. (64)

For the real charge very near the sphere, a = R+d for d ≪ R, this force may be approximated

as

F ≈ − Q2

4πǫ0
× 1

4d2
, (65)

similar to the point charge near a conducting plane, while for the the charge very far from

the sphere, a ≫ R, we have a very different behavior, namely

F ≈ − Q2

4πǫ0
× 2R3

a5
. (66)

The non-textbook problem:

(a) First, let’s take another look at the image of a charge outside a conducting sphere, cf.

the two previous problems. Basically, the induced charges on the spherical surface create

the electric field which inside the sphere cancels the field of the real outside charge Q, while

outside the sphere it looks like the field of the image charge Qi,

inside the sphere Einduced(x, y, z) = −Ereal charge(x, y, z),

outside the sphere Einduced(x, y, z) = Eimage charge(x, y, z).
(67)

Now let’s take away the original charge Q and put a new charge Q′ = −Qi inside the sphere,

precisely where the image charge used to be. Suppose the surface charge density σ(θ, φ)
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of the induced charges on the sphere remains exactly the same as before, then outside the

sphere

Einduced(x, y, z) = Eold imageQi(x, y, z) = −Enew chargeQ′

(x, y, z), (68)

so the net electric field outside the sphere is zero. Of course, this is precisely what the

surface charges need to do, so we conclude that the new σ(θ, φ) induced by the inside charge

Q′ = −Qi is indeed the same as the old σ(θ, φ) induced by the outside charge Q.

Consequently, inside the sphere, the electric field of the induced charges looks like the

field of the new image charge Q′
i = −Q located precisely where the original charge Q used

to be! And this confirms the image charge method for the inside charges.

Specifically, the real charge and its image lie on the same ray from the center of the

sphere and have reciprocal distances from the center:

binsidecharge × aoutsidecharge = R2
sphere (69)

regardless of which charge is real and which is the image.

As to the value of the image charge, for the outside real charge we have

Qi = −R

a
×Q = − b

R
×Q =⇒ Q = −R

b
×Qi. (70)

For the inside real charge, we exchange the real charge and the image, and also the signs of

both charges, thus

Q′
i = −Q = +

R

b
×Qi = −R

b
×Q′, (71)

or equivalently

Q′
i = − a

R
×Q′. (72)
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(b) Inside the sphere, the electric field of the induced charges on the surface looks exactly

like the field of the image charge. Consequently, the force on the charge Q′ is simply the

Coulomb force of the image charge Q′
i. Since the two charges have opposite signs, this force is

attractive; thus its direction is towards the image charge and away from the sphere’s center!

As to the magnitude,

F =
|Q′Q′

i|
4πǫ0

× 1

(a− b)2
=

Q′2

4πǫ0
× R

b
× 1
[

(R2/b)− b
]2 =

Q′2

4πǫ0
× Rb

(R2 − b2)2
. (73)

This force vanishes when the charge Q′ is at the sphere’s center, but it becomes large when

ithe charge approaches the spherical surface from the inside.

(c) The inside surface of a conducting shell does not care if the shell is grounded or not.

Regardless of what happens outside the inner surface, the induced charges on that surface

must cancel the electric field of the inside charge Q′ everywhere outside the inner surface, so

their field inside the cavity should look the field of the image charge. So the image charge

does not care if the sphere is grounded or not, and the force on the inside charge is exactly

the same in both cases.

The only difference between the grounded and un-grounded spheres concerns the electric

field outside the outer surface of the shell. If the shell is grounded, the outside surface is

neutral and the outside field is zero. On the other hand, for a neutral un-grounded shell, the

outside surface has charge +Q′ (to cancel the −Q′ charge of the inner surface), and there is

outside field which looks like the Coulomb field of a point charge +Q′ at the center of the

sphere.

Problem 3.13:

The potential in the infinite slot is explained in detail in the textbook example 3.3 and also

in my notes on the separation of variables method. According to the textbook equations

(3.30) and (3.34), the potential inside the slot is

V (x, y) =
∞
∑

n=1

An × sin
(nπy

a

)

× exp
(

−nπx

a

)

, (3.30)

where a is the slot’s width, and the coefficients An follow from expanding the boundary
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potential Vb(y) at x = 0 into the Fourier series,

An =
2

a

a
∫

0

Vb(y)× sin
(nπy

a

)

dy =⇒ Vb(y) =

∞
∑

n=1

An × sin
(nπy

a

)

. (3.34)

For the problem at hand, Vb(y) is a piece-wise constant function with a jump at x = a
2 ,

v0(y) =

{

+V0 for 0 < y < a
2 ,

−V0 for a
2 > y < a.

(74)

Plugging this boundary potential into eq. (3.34), we obtain

An = +
2V0
a

a/2
∫

0

sin
(nπy

a

)

dy − 2V0
a

a
∫

a/2

sin
(nπy

a

)

dy

= +
2V0
a

× a

nπ

(

1 − cos
nπ

2

)

− 2V0
a

× a

nπ

(

cos
nπ

2
− cos(πn)

)

=
2V0
nπ

×
(

1 + cos(nπ) − 2 cos
nπ

2

)

=
2V0
nπ

×
{

4 if n ≡ 2 (mod 4),

0 otherwise.

(75)

Thus, in the expansion (3.30) we may restrict n to n = 4m+ 2 for m = 0, 1, 2, 3, . . .; for all

other n the coefficients Cn are zero. Consequently, the series (3.30) becomes

V (x, y) =
2V0
π

∞
∑

m=0

4

4m+ 2
× sin

(

(4m+ 2)πy

a

)

× exp

(

−(4m+ 2)πy

a

)

. (76)

Note that this series looks just like the series in the textbook equation (3.36), except for

rescaling the coordinates, x → 2x, y → 2y. Consequently, we may sum up the series (76) in

exactly the same way as in eq. (3.37), namely

V (x, y) =
2V0
π

× arctan

(

sin(2πy/a)

sinh(2πx/a)

)

. (77)

Graphically, it looks like the square wave (74) at small x ≪ a, but for larger x it starts looking

more and more like the sine wave sin(2πy/a) with exponentially decreasing amplitudes. Here
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is the slice-plot of the potential V (y) for few fixed x ranging from 0 to 0.3 a:

y

V

x = 0

x = 0.05 a

x = 0.1 a

x = 0.2 a

x = 0.3 a

Problem 3.14:

The electric charge density σ on a surface of a conductor is related to the electric field

immediately outside the conductor,

σ = ǫ0 × E⊥[just outside the conductor]. (78)

For the problem at hand, the textbook eqs. (3.36–37) give us the potential inside the slot,

V (x, y) =
4V0
π

∑

oddn≥1

1

n
× sin

(nπy

a

)

× exp
(

−nπx

a

)

(3.36)

=
2V0
π

arctan

(

sin(πy/a)

sinh(πx/a)

)

, (3.37)

from which we may obtain the electric field anywhere inside the slot, and in particular just

outside the conducting strip at the slot’s left end. Consequently, eq. (78) will gives us the

charge density σ(y) on the right side of the vertical conducting strip at x = 0 — the side

facing the inside of the slot.
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Presumably, these is also some other charge density on the left side of the vertical strip

facing the outside world, but to find that density we would need to know the electric field

outside the slot. That task is beyond the present homework, so I am not going to write the

solution here.

Going back to the potential (3.37) and taking the ∂/∂x derivative, we have

d

dx
arctan

A

B(x)
=

d arctan(A/B)

d(A/B)
× d(A/B(x))

dx
=

1

1 + (A/B)2
× −AB′

B2
= − AB′

A2 +B2

(79)

hence for A = sin(πy/a) and B(x) = sinh(πx/a),

∂

∂x
arctan

(

sin(πy/a)

sinh(πx/a)

)

= −sin(πy/a)× (π/a) cosh(πx/a)

sin2(πy/a) + sinh2(πx/a)
(80)

and therefore

Ex(x, y) = −∂V

∂x
= +

2V0
a

× sin(πy/a)× cosh(πx/a)

sin2(πy/a) + sinh2(πx/a)
. (81)

For x → 0 this formula simplifies to

Ex(0, y) =
2V0
a

× 1

sin(πy/a)
, (82)

so according to eq. (78), the charge density on the right side of the vertical strip is

σ(y) =
2ǫ0V0
a

× 1

sin(πy/a)
. (83)

Alternative derivation of eq. (82):

Suppose we did not have the analytical formula (3.37) for the potential inside the slot but

only the un-summed series (3.36). In this case, we may take the x–derivative term-by-term

to get a series for the electric field, then simplify that series for x = 0, and finally try to sum
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it up. Thus, starting with the potential (3,36), we have

Ex(x, y) = − ∂

∂x





4V0
π

∑

oddn≥1

1

n
× sin

(nπy

a

)

× exp
(

−nπx

a

)





= −4V0
π

∑

oddn≥1

1

n
× sin

(nπy

a

)

×
[

d

dx
exp

(

−nπx

a

)

= −nπ

a
× exp

(

−nπx

a

)

]

= +
4V0
a

∑

oddn≥1

sin
(nπy

a

)

× exp
(

−nπx

a

)

,

(84)

which for x = 0 simplifies to

Ex(0, y) =
4V0
a

∑

oddn≥1

sin
(nπy

a

)

. (85)

To sum up this Fourier series we use

sin(nξ) = Im
(

einξ
)

= Im
(

(

eiξ
)n
)

for ξ = π(y/a). (86)

Consequently,

∑

oddn≥1

sin(nξ) = Im





∑

oddn≥1

(

eiξ
)n





= Im

(

∞
∑

m=0

(

eiξ
)2m+1

=
eiξ

1 −
(

eiξ
)2 =

1

e−iξ − e+iξ
=

1

−2i sin(ξ)

)

=
+1

2 sin(ξ)
,

(87)

and therefore

Ex(0, y) =
2V0
a

× 1

sin(πy/a)
, (88)

in perfect agreement with eq. (82).
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Problem 3.15:

(a) Using the separation of variables method in Cartesian coordinates (x, y) [for the problem

at hand, the potential does not depend on z], we look for solutions of the Laplace equation

(and some of the boundary conditions) in the form

V (x, y) =
∑

n

Cn × fn(x)× gn(y). (89)

Similar to the infinite slot example discussed in class, we have

gn(y) = sin(nπy/a) for integer n = 1, 2, 3, . . . . (90)

hence fn(x) obeys f
′′
n(x) = +(nπ/a)2fn(x) and therefore

Cnfn(x) = An exp(+nπx/a) + Bn exp(−nπx/a) (91)

for some constant coefficients An and Bn. For the infinite slot, the asymptotic condition

at x → ∞ requires An = 0, but for the rectangular pipe we have a different condition.

Specifically, since the boundary condition at the left wall x = 0 is V = 0, we need fn(0) = 0,

which calls for An +Bn = 0. In other words, up to an overall coefficient,

fn(x) = sinh(nπx/a), (92)

hence

V (x, y) =
∞
∑

n=1

Cn × sinh(nπx/a)× sin(nπy/a). (93)

The coefficients Cn in this series are determined from the boundary condition at the right

wall x = b:
∞
∑

n=1

Cn sinh(nπb/a)× sin(nπy/a) = given Vb(y). (94)

Thus, Fourier transforming this boundary potential Vb(y), we immediately obtain

Cn × sinh(nπb/a) =
2

a

a
∫

0

da sin(nπy/a)× Vb(y). (95)

Once we evaluate all these integrals, find all the coefficients Cn, plug them into eq. (93), and

sum the series, we would obtain the potential V (x, y) over the entire interior of the pipe.
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(b) Now consider the special case Vb(y) = V0 = const. Fourier transforming this constant

into a series of sine waves, we obtain

2

a

a
∫

0

dy sin(nπy/a)× V0 =
2V0
a

×
[− cos(nπy/a)

(nπ/a)

]y=a

y=0

=
2V0
nπ

× (1− cos(nπ) =
2V0
nπ

×
{

2 for odd n,

0 for even n,

(96)

and hence

Coddn =
(4/nπ)V0

sinh(nπb/a)
, Cevenn = 0. (97)

Plugging these coefficient into the series (93), we arrive at

V (x, y) =
∑

oddn=1,3,5,...

4V0
nπ

× sinh(nπx/a)

sinh(nπb/a)
× sin(nπy). (98)

I don’t know how to sum this series analytically, and I don’t expect you to do it in your

homework (or even try to do it). So let me simply sum the series numerically for b = 1
2a and

present a 3D plot of the solution:
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