
PHY–352 K. Solutions for problem set #7.

Problem 3.29:

The system shown on textbook figure 3.31 has zero net charge but non-zero dipole moment

pointing up. Indeed,

pnet =
∑

Qiri = +q(0, 0,−a) + 3q(0, 0,+a) − 2q(0,−a, 0) − 2q(0,+a, 0)

= qa
(

0, (0 + 0 + 2− 2), (−1 + 3 + 0 + 0)
)

= (0, 0,+2qa).
(1)

There are also non-zero quadrupole moment, octupole moment, etc., but at long distances

r ≫ a the lowest non-zero multipole — in this case, the dipole — dominates the potential.

Thus,

V (x, y, z)net ≈ Vdipole(x, y, z) =
p = 2qa

4πǫ0
× cos θ

r2
=

p = 2qa

4πǫ0
× z

[x2 + y2 + z2]3/2
. (2)

Problem 3.30:

(a) A spherical shell with charge density σ(θ, φ) = k cos θ has zero net charge but non-zero

dipole moment. By axial symmetry, this dipole moment points in the z direction and has

value

pz =

∫∫

z × σ × d2A =

∫∫

R cos θ × k cos θ × R2 sin θ dθ dφ

= 2πR3k ×
+1
∫

−1

cos2 θ d(cos θ) = 2πR3k × 2

3
.

(3)

(b) At large distances from the sphere, the potential is dominated by the lowest multipole

moment, which for the sphere in question is the dipole. Thus, for r ≫ R,

V (r, θ, φ) ≈ Vdipole(r, θ, φ) =
pz =

4
3πR

3k

4πǫ0
× cos θ

r2
=

R3k

3ǫ0
× cos θ

r2
. (4)

For comparison, using the separation of variable method described in textbook §3.3.2
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and in my notes (pages 26–36, especially 33–36), we have

V (r, θ, φ) =

∞
∑

ℓ=0

Cℓ ×
(

R

r

)ℓ+1

× Pℓ(cos θ) for all r > R, exactly, (5)

where the coefficients Cℓ obtain as

Cℓ =
R

2ǫ0

π
∫

0

σ(θ)Pℓ(cos θ) sin θ dθ. (6)

In particular, for σ = k cos θ = kP1(cos θ), we have

C1 =
R

2ǫ0
× 2k

3
=

kR

3ǫ0
, while all other Cℓ = 0,

hence

V (r, θ, φ) =
kR

3ǫ0
× R2

r2
× cos θ =

kR3

3ǫ0
× cos θ

r2
, for all r > R, exactly. (7)

In other words, the dipole approximation (4) to the outside-the-sphere potential happens

to be exact. From the multipole expansion point of view, this means that all the electric

multipoles other than the dipole happen to vanish.

Problem 3.53:

In the textbook exercise 3.8 — and also in my notes — we considered a conducting sphere

placed in a uniform external electric field E0, and we saw that the net field outside the

spheres was the sum of the external field plus a pure dipole moment induced in the sphere.

In terms of the potential,

V (r, θ) = −E0 × r cos θ + E0R
3 × cos θ

r2
(8)

where the first term is the external field while the second term is due to the the induced

dipole moment

p = 4πǫ0R
3E0. (9)

Note that this formula is exact for all r > R, so there are no higher multipoles induced in

the sphere, just the dipole.
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To obtain the same result using the image charge method, we treat the uniform external

field as if it is created by a pair of very distant point charges, +Q at r+ = (0, 0,−a) and −Q

at (0, 0,+a) for a ≫ R. At the origin, the field created by these two charges is

Eext(0) =
2Q

4πǫ0 a2
ẑ, (10)

and while this field is not exactly uniform, it varies over the distances comparable to a,

so when we focus on much shorter distances the field (10) looks approximately uniform.

To make it more uniform, let’s increase a while at the same time increasing the charge Q

according to

Q = 2πǫ0 × E0 × a2. (11)

As we do this, the electric field (10) at the origin remains fixed at Eext(0) = E0ẑ, but it

becomes more and more uniform since it now varies over the increasingly large distance

scales O(a). Thus, in the a → ∞ limit (while the charge ±Q grow according to eq. (11)),

the electric field dues to two distant charges becomes uniform E(r) ≡ E0ẑ.

Now consider the induced charges on the sphere and the electric field they create. For a

single point charge outside the sphere, the field of the induced charges looks like the field of

the image charge inside the sphere. The value of this image charge is

Qimage = −R

a
×Qreal (12)

and it is located on the same ray from the center of the sphere as the real charge but at

distance

b =
R2

a
(13)

from the center. For the un-grounded sphere, the image charge is compensated by the extra

charge at the center of the sphere.
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For the problem at hand, we have two real charges ±Q at the same distance a, so there

are two image charges,

−QR

a
at (0, 0,−b) and +

QR

a
at (0, 0,+b). (14)

Note that the net image charge is zero, so there is no need for the compensating charge at

the sphere’s center.

In the limit a → ∞ we have b → 0, so the two image charges get very close to each other

and form a dipole. The dipole moment of the two image charges points in the +z direction,

while its magnitude is

p = 2b× QR

a
=

2R2

a
× QR

a
=

2QR3

a2
, (15)

and since we keep Q/a2 ratio fixed as we take a → ∞, this dipole moment stays fixed.

Specifically, according to eq. (11),

p =
2R3

a2
× 2πǫ0E0 a

2 = 4πǫ0R
3E0 . (16)

Moreover, in the a → ∞ limit and hence b → 0, the two image charges become an ideal

dipole: finite dipole moment but infinitesimally short distance between the opposite charges.

Such dipoles have negligible quadrupole, octupole, and higher multipole moment, and only

the dipole moment is present; that’s why they are called ideal dipoles or pure dipoles.

For the sphere in question, this means that the electric field due to induced charges on

the sphere’s surface is the field of a pure dipole (16). Thus, combining the external field with

the induced dipole field, we have

Vnet(r) = Vext(r) + Vdipole(r) = −E0 z +
p

4πǫ0

cos θ

r2
= −E0 r cos θ + E0R

3×cos θ

r2
. (17)

exactly as in eq. (8).
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The non-textbook problem:

By symmetry, the solid ball in question has zero net charge but it has a non-zero dipole

moment pointing from the south pole to the north pole (assuming ρ0 > 0). Indeed, the

charge density of the ball can be written as

ρ(r, θ, φ) = ρ0 × sign(cos θ)×
{

1 for r < R,

0 for r > R,
(18)

hence the dipole moment

pz =

∫∫∫

ball

d3Vol ρ(r)× z

=

R
∫

0

dr r2
π
∫

0

dθ sin θ

2π
∫

0

dφ ρ0 sign(cos θ)× r cos θ

= ρ0 ×
R
∫

0

dr r3 ×
π
∫

0

dθ sin θ cos θ sign(cos θ)× 2π

= 2πρ0 ×
R4

4
×

+1
∫

−1

dc c sign(c)

(19)

where the last integral over c = cos θ evaluates to

+1
∫

−1

dc c sign(c) =

+1
∫

0

dc c −
0

∫

−1

dc c =
+1

2
− −1

2
= 1. (20)

Thus, the ball in question has dipole moment

p = π
2
ρ0R

4 ẑ. (21)

There are also higher multipole moments for the odd ℓ = 3, 5, 7, . . ., but far away from

the ball the potential is dominated by the dipole moment,

V (r, θ) ≈ p

4πǫ0
× cos θ

r2
=

ρ0R
4

8ǫ0
× cos θ

r2
. (22)
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Problem 3.57:

By energy conservation, the charged particle would move at constant speed along some orbit

only if its potential energy — and hence the electrostatic potential of the dipole — is constant

along the orbit. By the axial symmetry of the dipole’s potential

V =
p

4πǫ0
× cos θ

r2
, (23)

the circular orbits which are parallel to the xy plane and centered somewhere on the z axis

automatically obey this condition. In the cylindrical coordinates (z, s, φ) such orbits are

parametrized by

s = S = const, z = Z = const, φ runs from 0 to 2π. (24)

In fact, there are no other circular orbits over which the dipole potential remains constant,

but proving this fact is a much harder exercise. For the purposes of this homework, let’s

simply assume that the orbit has geometry (24) for some S and Z.

Next, circular motion at constant speed needs a centripetal force F = mv2/S, which

must come from the dipole’s electric field. Thus, along the orbit we need

qE = −mv2

S
ŝ ; (25)

note that the direction of this force must be ⊥ to the z axis and towards that axis. On the

other hand, as explained in my notes on electric dipoles, the electric field of the dipole is

E(r) =
3(p · r̂)r̂ − p

4πǫ0 r3
. (26)

In cylindrical coordinates, the numerator here becomes

3p
z

r

(z

r
ẑ +

s

r
ŝ

)

− pẑ =
p

r2 = s2 + z2
(

(3z2 − r2 = 2z2 − s2)ẑ + 3szŝ
)

, (27)

hence

E(z, s, φ) =
p

4πǫ0

(2z2 − s2)ẑ + 3zsŝ

[z2 + s2]5/2
. (28)

6

http://www.ph.utexas.edu/~vadim/Classes/2024s-u/dipole2.pdf


To keep this field within the plane of the particle’s orbit we need Ez = 0 and hence

2z2 − s2 = 0. (29)

Furthermore, this field must point towards the z axis rather then away from it, which calls

foe Es < 0 and hence z < 0. Thus, given the radius S of the circular orbit, its vertical

coordinate should be

Z = − S√
2
. (30)

Given this orbit geometry, the centripetal force due to the dipole’s electric field is

F = q|Es| =
qp

4πǫ0
× 3S2/

√
2

[(3/2)S2]5/2
=

4

3
√
3

qp

4πǫ0 S3
, (31)

which sets the particle’s orbital speed so that

F =
mv2

S
, (32)

hence

v =
2

33/4

√

qp

4πǫ0m

1

S
. (33)

Finally, the angular momentum and the net energy of the particle follow easily from the

above data. The angular momentum is simply

L = S ×mv =
2

33/4

√

qpm

4πǫ0
(34)

regardless of the orbital radius S, the kinetic energy is

K =
mv2

2
=

2

3
√
3

qp

4πǫ0

1

S2
, (35)

and the potential energy is

U = qV =
qp

4πǫ0

(

cos θ

r2
=

z

[s2 + z2]3/2

)

=
qp

4πǫ0

−S/
√
2

((3/2)S2)3/2
= − 2

3
√
s

qp

4πǫ0

1

S2
. (36)

Note that the particles kinetic energy and the potential energy have equal magnitudes and
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opposite signs, so the total mechanical energy of the charged particle is zero,

K + U = 0. (37)

Problem 4.4:

The atom is neutral on the whole, but in the electric field E of the point charge q the atom

acquires a dipole moment

p = αE. (38)

Moreover, the electric field of the point charge is not uniform, hence the dipole moment (38)

feels a net force

F = (p · ∇)E = α(E · ∇)E. (39)

Specifically, for

E(r) =
q

4πǫ0

r̂

r2
, (40)

we have

E · ∇ =
q

4πǫ0 r2
∂

∂r

∣

∣

∣

∣

fixed θ,φ

, (41)

hence

F = α
q

4πǫ0 r2
∂

∂r

(

q

4πǫ0

r̂

r2

)

=
αq2

(4πǫ0)2 r2
−2r̂

r3
= − 2αq2

(4πǫ0)2
r̂

r5
. (42)

Note: the direction of this force is −r̂, which means directly towards the charge; in other

words, the charge attracts a neutral but polarizable atom with the force

F =
2αq2

(4πǫ0)2
× 1

r5
(43)

which decreases with distance like 1/r5.
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Problems 4.5 and 4.29:

For the sake of definiteness, let the first dipole sit at the coordinate origin r1 = (0, 0, 0) and

point in the +ŷ direction, while the second dipole sits at point r2(+r, 0, 0) and points in the

+x̂ direction, as shown on the diagram below:

x

y

p1
p2

(44)

4.5(a) The first dipole creates electric field

E1(r) =
1

4πǫ0

3(p1 · r̂)r̂ − p1

|r|3 . (45)

In particular, at the location of the second dipole

p1 · r̂2 = 0 =⇒ 3(p1 · r̂)r̂ − p1

|r|3 =
−p1

r3
(46)

and therefore

E1(r2) = − p1
4πǫ0 r3

ŷ. (47)

This field creates the torque on the second dipole (relative to its own center)

~τ2 = p2 × E1(r2) = (p2x̂)×
−p1ŷ

4πǫ0 r3
=

p1p2
4πǫ0 r3

(−x̂× ŷ) = − p1p2
4πǫ0 r3

ẑ. (48)

Note: on the diagram (44), the direction of this torque is clockwise.

9



4.5(b) To find the torque on the first dipole, we need the electric field of the second dipole

at the first dipole’s location. In general,

E2(r) =
1

4πǫ0

3(p2 · r̂′)r̂′ − p2

|r′|3 (49)

where r′ = r− r2. At the location of the first dipole r′ = (−r, 0, 0), hence |r′| = r, r̂′ = −x̂,

and since p2 = (+p2, 0, 0), we have

p2 · r′ = −p2 =⇒ 3(p2 · r̂′)r̂′ − p2 = +3p2x̂ − p2x̂ = +2p2x̂ (50)

and consequently

E2(r1) = +
2p2

4πǫ0 r3
x̂. (51)

Therefore. the torque on the first dipole (relative to its own center) is

τ1 = p1 × E2(r1) = (p1ŷ)×
2p2

4πǫ0 r3
x̂ =

2p1p2
4πǫ0 r3

(ŷ× x̂) = − 2p1p2
4πǫ0 r3

ẑ (52)

Note: this torque is twice as strong as the torque on the second dipole. Also, both torques

have the same direction — clockwise on the diagram (44) — so they do not add up to zero!

4.29(a) Let me first derive a general formula for the force between two electric dipoles, verify

the Third Law of Newton, and then apply the formula to the dipoles at hand.

The electric field of the first dipole at the location of the second dipole is

E1(r2) =
1

4πǫ0

3(p1 · r̂12)r̂12 − p1

r312
=

1

4πǫ0

3(p1 · r12)r12 − r212p1

r512
(53)

where r12 = r2 − r1. Consequently, the force on the second dipole is

F1 on 2 = (p2 · ∇)E1(r2) (54)

where the gradient ∇ is with respect to the second dipole’s location r2, while the first

dipole’s location r1 is fixed. However, since the field E1(r2) depends only on the difference
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r12 = r2 − r1, we may just as well take the gradient with respect to the r12. Thus,

∇(p1 · r12) = p1 =⇒ (p2 · ∇)(p1 · r12) = p2 · p1 , (55)

(p2 · ∇)r12 = p2 , (56)

(p2 · ∇)
(

3(p1 · r12)r12 − r212p1

)

= 3(p2 · p1)r12 + 3(p1 · r12)p2 − 2(p2 · r12)p1 , (57)

(p2 · ∇)
1

r512
= −5(p2 · r12)

r712
, (58)

hence

F1 on 2 = (p2 · ∇)

[

1

4πǫ0

3(p1 · r12)r12 − r212p1

r512

]

=
1

4πǫ0











3(p2 · p1)r12 + 3(p1 · r12)p2 − 2(p2 · r12)p1

r512

− 5(p2 · r12)
r712

[

3(p1 · r12)r12 − r212p1

]











=
1

4πǫ0

3(p2 · p1)r̂12 + 3(p1 · r̂12)p2 + 3(p2 · r̂12)p1 − 15(p1 · r̂12)(p2 · r̂12)r̂12
r412

.

(59)

This force decreases as 1/r412 with the distance between the dipoles, and it has rather compli-

cated dependence on the directions of the two dipole moments relative to the line connecting

the dipoles. However, this direction dependence has two important features: The bottom

line of eq. (59) is symmetric WRT p1 ↔ p2 and odd with respect to the direction vector

r̂12. Consequently, when we exchange the roles of the two dipoles, we obtain

p1 ↔ p2 , r1 ↔ r2 =⇒ r12 → r21 = −r12 =⇒

=⇒ r12 → r21 = r12 but r̂12 → r̂21 = −r12 ,
(60)

hence

F2 on 1 =
1

4πǫ0

3(p1 · p2)r̂21 + 3(p2 · r̂21)p1 + 3(p1 · r̂21)p2 − 15(p2 · r̂21)(p1 · r̂21)r̂21
r421

=
1

4πǫ0

−3(p2 · p1)r̂12 − 3(p1 · r̂12)p2 − 3(p2 · r̂12)p1 + 15(p1 · r̂12)(p2 · r̂12)r̂12
r412

= −F1 on 2 .
(61)

Thus, we see that the force between two electric dipoles duly obeys the Third Law of Newton:
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The force of the second dipole on the first dipole has the same magnitude but opposite

direction from the force of the first dipole on the second dipole.

Finally, let’s apply the general formula (59) to the two dipoles on the diagram (44).

Given p1 = (0, p1, 0), p2 = (p2, 0, 0) and r̂12 = (1, 0, 0), we have:

(p2 · p1) = 0, (p1 · r̂12) = 0, (p2 · r̂12) = p2 , (62)

hence

3(p2·p1)r̂12 +3(p1·r̂12)p2 + 3(p2·r̂12)p1 − 15(p1·r̂12)(p2·r̂12)r̂12 = 3p2p1 = 3p2p1 ŷ (63)

and therefore, the force of the first dipole on the second dipole is

F1 on 2 = +
3p1p2
4πǫ0 r4

ŷ (64)

while the force of the second dipole on the first dipole is

F2 on 1 = − 3p1p2
4πǫ0 r4

ŷ. (65)

4.29(b) Finally, let’s consider the torques on the dipoles relative to a common point, namely

the origin of the coordinate system. In general, the net torque on a body relative to some

point depends on the choice of that reference point according to

~τnet[relative to A] − ~τnet[relative to B] = (rA − rB)× Fnet (66)

where Fnet is the net force acting on the body in question. In particular, for the two dipole

in question, we have

~τ1[relative to origin] = ~τ1[relative to dipole itself] + r1 × Fnet
on 1 ,

~τ2[relative to origin] = ~τ2[relative to dipole itself] + r2 × Fnet
on 2 .

(67)

Since the first dipole happens to sit at the origin of our coordinate system, r1 = 0, its torque

relative to the origin is exactly as we have calculated in problem 4.5(b):

~τ1[relative to origin] = ~τ1[relative to dipole itself] = − 2p1p2
4πǫ0 r3

ẑ. (68)

On the other hand, the second dipole sits at r2 = (r, 0, 0) = rx̂, so its torque relative to the

origin has an extra term in addition to the torque relative to its own center we have calculate
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in problem 4.5(a):

~τ2[relative to origin] = ~τ2[relative to dipole itself] + r2 × F1 on 2

= − p1p2
4πǫ0 r3

ẑ + (rx̂)×
(

3p1p2
4πǫ0 r4

ŷ

)

=
p1p2

4πǫ0 r3

(

−ẑ + 3x̂× ŷ = −ẑ + 3ẑ = +2ẑ
)

= +
2p1p2
4πǫ0 r3

ẑ.

Note: unlike the clockwise torque relative to the dipole’s own center, the torque relative to

the origin is counterclockwise; it also has a smaller magnitude.

But most importantly, the torques on the two dipoles relative to the same reference point

— the origin — are equal in magnitude and opposite in direction,

~τ1 on 2[relative to origin] + ~τ2 on 1[relative to origin] = ~0. (69)

This is the rotational analogue of the Newton’s Third Law, which assures that the net angular

momentum of the two dipoles is conserved.

Problem 4.6:

The electric field of the dipole leads to surface charges on the conducting plane, and the field

of those conducting charges can be accounted by the mirror image of the dipole in the plane:

xy plane

z

source dipole p

image dipole p′

(70)
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Note that the image charges have opposite signs while the mirror reflection reverses the z

coordinate but not the x or y coordinates, thus

q → −q, x → +x, y → +y, z → −z. (71)

Consequently — as you see on the diagram (70) — the image dipole moment p′ has the

same z component as the original dipole moment p but opposite x and y components,

p′z = +pz but p′x = −px and p′y = −py , (72)

so it is tilted from the vertical in the opposite direction.

Now suppose the source dipole — and hence also the image dipole — have very small

sizes compared to the distance r = 2z between them, so we may approximate both dipoles

as ideal dipoles. Then the torque on the source dipole (relative to its own center) is

~τ = p× E′ (73)

where E′ is the electric field of the image dipole at the location of the source dipole. In

vector notations

E′ =
1

4πǫ0 r3

(

3(p′ · r̂)r̂ − p′

)

(74)

where r = 2z ẑ =⇒ r̂ = ẑ. In components,

(p′ · r̂) = p′z = pz , (75)

3(p′ · r̂)r̂ − p′ = 3p′z ẑ − p′x x̂ − p′y ŷ − p′z ẑ

= 2p′z ẑ − p′x x̂ − p′y ŷ

= 2pz ẑ + px x̂ + py ŷ, (76)

E′ =
1

4πǫ0 (2z)3
(

px x̂ + py ŷ + 2pz ẑ
)

. (77)
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Note the factor of 2 (marked in red) in front of the pz ẑ term — it makes the electric field

E′ non-parallel to the source dipole p, and that what causes the torque on the dipole:

~τ = p× E′

=
1

4πǫ0 (2z)3
(

px x̂ + py ŷ + pz ẑ
)

×
(

px x̂ + py ŷ + 2pz ẑ
)

=
1

4πǫ0 (2z)3
(

px x̂ + py ŷ + pz ẑ
)

×
(

pz ẑ
)

=
1

4πǫ0 (2z)3
(

+pypz x̂ − pxpz ŷ
)

.

(78)

For the dipole tilted from the +z axis through angle φ towards the +x axis, we have

px = p sinφ, py = 0, pz = p cosφ =⇒ ~τ =
p2

4πǫ0 (2z)3
(

− sinφ cosφ ŷ
)

. (79)

For φ < 90◦, the direction of this torque is −ŷ — i.e., counterclockwise in the xz plane,

— which means that the dipole is torqued back to the upward direction. But for tilt angle

φ > 90◦, the torque flips directions and starts further tilting the dipole to the downward

direction.

The torque vanishes when the dipole is either vertical or horizontal. The vertical direc-

tions — both up and down — are stable: when the dipole is tilted away from vertical, the

torque will twist it back to the vertical (up or down, whichever is closer). On the other hand,

the horizontal directions are unstable: for any tilt away from the horizontal, the torque will

twist it further away from the horizontal towards the vertical.

Problem 4.30:

Let’s start with a picture of the electric field lines between the not-quite-parallel plates:
+

−

(80)

The direction of E is approximately downward, while its magnitude increases as we go left
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(where the plates are closer to each other) and decreases as we go right. At the same time, the

dipole moment p (green arrow on figure (80)) is pointing up (cf. the textbook figure 4.33).

This dipole moment is anti-parallel to the electric field, so its potential energy is

U(x) = −p · E(x) = +pE(x). (81)

This energy increases when the dipole moves left and decreases when the dipole moves right,

which means a non-zero net force on the dipole pushing it to the right.

Thus, the net force on the dipole shown on figure 4.33 pushes it to the right.

Alternative solution, without using the potential energy. The textbook equation (4.5)

gives the net force on an ideal dipole in a non-uniform electric field,

F = (p · ∇)E. (82)

For the dipole pointing in the +y direction, this means

F = p
∂

∂y
E(x, y). (83)

At first blush, the electric field depicted on figure (80) looks vertical and y independent,

but a closer look shows that the field lines are slightly bent and follow circular arcs rather

than straight lines. Mathematically, it means that E(x, y) has a small x component which

depends on y: For positive y the Ex is positive while for negative y the Ex is negative.

Consequently, the derivative ∂Ex/∂y is positive, which means that the force (83) has a

positive x component, Fx > 0. As to the y component of the force, the derivative ∂Ey/∂y

vanishes by symmetry (for the dipole sitting on the x axis), hence Fy = 0. Thus, the

force (83) pushes the dipole to the right.
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Problem 3.46:

First, let me plot the three charge densities (a), (b), (c) along the rod:

z

λ(z)

(a) (b)

(c)

(a) By inspection of the red line on this plot, the density λa(z) is positive all along the rod,

so there is a non-zero net charge (AKA the monopole moment)

Qq =

∫

λa(z) dz =

+a
∫

−a

k cos
πz

2a
dz =

2ka

π

(

sin
+π

2
− sin

−π

2

)

=
4

π
ka. (84)

Hence, the leading term in the potential at large distances from the rod is

Va(r, θ) ≈ Qnet

4πǫ0
× 1

r
=

ka

π2ǫ0
× 1

r
. (85)

(b) By inspection of the green curve on the plot, the density λb(z) is antisymmetric WRT

z → −z, hence there is no net charge but there is a net dipole moment

p =

∫

z × λb(z) dz =

+a
∫

−a

z × k sin(πz/a) dz =
ka2

π2

+π
∫

−π

t sin(t) dt 〈〈where t = πz/a 〉〉

=
ka2

π2
×

[

sin(t) − t cos(t)
]+π

−π
=

ka2

π2
×

(

(+π) − (−π)
)

=
2ka2

π
.

(86)

Consequently, the leading term in the potential at large distances from the rod is

Vb(r, θ) =
p

4πǫ0
× cos θ

r2
=

ka2

2π2ǫ0
× cos θ

r2
. (87)
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(c) Finally, according to the blue line on the plot, the λc(z) distribution is symmetric rather

than antisymmetric WRT z → −z, so there’s no dipole moment nor any higher multipole

moment with an odd ℓ; only the even–ℓ multipoles are allowed. However, for ℓ = 0 the

monopole moment — i.e., the net charge of this distribution — is zero,

Qnet =

∫

λc(z) dz =

+a
∫

−a

k cos(πz/a) dz =
ka

π

[

− sin(πz/a)
]z=+a

z=−a
= 0. (88)

Consequently, the leading multipole of the distribution (c) should be the quadrupole moment.

Now let’s calculate the quadrupole moment tensor

Qij =

∫

(

3
2
rirj − 1

2
r2δi,j

)

× λc(z) dz. (89)

Along the rod x = y = 0, hence

(

3
2rirj − 1

2r
2δi,j

)

=











+z2 for i = j = z,

−1
2
z2 for i = j = x or i = j = y,

0 for i 6= j,

(90)

which means that

Qzz =

∫

z2 × λc(z) dz, (91)

Qxx = Qyy = −1
2Qzz , (92)

all other Qij = 0. (93)

Consequently, the numerator of the quadrupole potential

Vquadrupole(r) =

∑

i,j Qi,j r̂ir̂j

4πǫ0 r3
(94)

has form

∑

i,j

Qi,j r̂ir̂j = Qzz ×
z2 − 1

2x
2 − 1

2y
2

r2

= Qzz ×
(

cos2 θ − 1
2
sin2 θ = 3

2
cos2 θ − 1

2

)

= Qzz × P2(cos θ),

(95)
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which leads to

Vquadrupole(r, θ) =
Qzz

4πǫ0
× P2(cos θ)

r3
. (96)

To complete this calculation, we need to evaluate the integral in eq. (91):

Qzz =

∫

z2 × λc(z) dz =

+a
∫

−a

z2 × k cos(πz/a) dz

=
ka3

π3

+π
∫

−π

t2 cos(t) dt 〈〈where t = πz/a 〉〉

=
ka3

π3
×

[

t2 sin(t) + 2t cos(t) − 2 sin(t)
]t=+π

t=−π
=

ka3

π3
×

[

(−2π) − (+2π) = −4π
]

= −4ka3

π2
. (97)

Therefore, the leading term in the potential at large distances from the rod is

V (r, θ) ≈ Vquadrupole(r, θ) = − ka3

π3ǫ0
× P2(cos θ)

r3
. (98)

Problem 3.27:

Far away from the ball in question, the potential is dominated by the lowest–ℓ multipole

with a non-zero moment. By axial symmetry of the ball,

V (r, θ) =
Mℓ

4πǫ0
× Pℓ(cos θ)

rℓ+1
−→ Mℓ

4πǫ0
× (±1)ℓ

rℓ+1
for θ = 0 or θ = π. (99)

So let’s start evaluating the monopole, dipole, quadrupole, etc., moments of the charged ball

until we find a non-zero moment.

The charge density

ρ(r, θ) = k × R(R− 2r)

r2
× sin θ ×

{

1 for r < R,

0 for r > R,
(100)

is rather singular at the origin, but the net charge of the ball in question is finite. In fact,
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the net charge — AKA, the monopole moment — is zero:

Qnet =

∫∫∫

ball

ρ d3Vol

=

R
∫

0

k
R(R− 2r)

r2
× r2 dr ×

π
∫

0

sin θ × sin θ dθ ×
2π
∫

0

dφ

= kR ×
R
∫

0

(R − 2r) dr ×
π
∫

0

sin2 θ dθ × 2π

= kR × 0× π

2
× 2π = 0

(101)

since the radial integral happens to vanish:

R
∫

0

(R− 2r) dr = R× R − 2× R2

2
= 0. (102)

The dipole moment p of the ball also vanishes due to symmetries of the charge den-

sity (100): The axial symmetry kills the px and the py components of the dipole moment,

while the reflection symmetry z ↔ −z (or in spherical coordinates, θ ↔ π − θ) kills the pz

component.

By the same symmetry, all the higher 2ℓ–poles with odd ℓ also vanish, so only the even–ℓ

multipoles may contribute to the potential.

Thus, out next order of business is to calculate the quadrupole moment of the charge

density (100). By axial symmetry, the only independent component of the quadrupole tensor

is

Qzz = M2 =

∫∫∫

ball

(

3
2z

2 − 1
2r

2 = r2 × P2(cos θ)
)

× ρ d3Vol

=

R
∫

0

dr r2
π
∫

0

dθ sin θ

2π
∫

0

dφ

[

r2(3 cos2 θ − 1)

2
× k

R(R− 2r)

r2
sin θ

]

=

R
∫

0

r2
kR(R − 2r)

r2
r2 dr ×

π
∫

0

3 cos2 θ − 1

2
sin2 θ dθ × 2π,

(103)
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where the θ integral evaluates to

π
∫

0

3 cos2 θ − 1

2
× sin2 θ dθ =

π
∫

0

3 cos(2θ) + 3− 2

4
× 1− cos(2θ)

2
dθ

〈〈 changing variable to θ2 = 2θ 〉〉

=
1

16

2π
∫

0

dθ2 (3 cos θ2 + 1)(1− cos θ2)

=
1

16

2π
∫

0

dθ2 (1 + 2 cos θ2 − 3 cos2 θ2)

=
1

16

(

(2π) + 0 − 3× 2π

2

)

= − π

16
,

(104)

while the radial integral evaluates to

R
∫

0

r2×kR(R − 2r)

r2
×r2 dr = kR

R
∫

0

(Rr2−2r3) dr = kR×
(

R × R3

3
− 2× R4

4

)

= −kR5

6
.

(105)

Altogether, the quadrupole moment comes out to

M2 =
−kR5

6
× −π

16
× 2π = +

π2

48
kR5 6= 0.

Note: unlike the net charge and the dipole moment, the quadrupole moment of the charged

ball in question does not vanish. Therefore, it is this quadrupole moment which dominates

the electric potential at large distances:

V (r, θ) ≈ Vquadrupole =
M2

4πǫ0
× P2(cos ℓ)

r3
=

πkR5

192 ǫ0
× 3 cos2 θ − 1

2r3
. (106)

Along the z axis where cos θ = ±1, this potential becomes

V ≈ πkR5

192 ǫ0
× 1

r3
. (107)
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