
PHY–352 K. Solutions for problem set #10.

The non-textbook problem:

(a) The electric current density J and the electric charge density ρ are related by the conti-

nuity equation

∇ · J(x, y, z, t) +
∂ρ(x, y, z, t)

∂t
= 0. (1)

A steady current is time-independent, which requires time-independent ∂ρ/∂t, hence

ρ(x, y, z, t) = F (x, y, z) + t×G(x, y, z) (2)

for some time-independent functions F (x, y, z) and G(x, y, z). But since the electric charge

cannot keep accumulating all the time, we must have G = 0 and thus time-independent

ρ(x, y, z). Consequently, a steady current density must have zero divergence,

∇ · J(x, y, z) = 0. (3).

Let’s check this condition for the current in question:

J(x, y, z) = k
(

x x̂ + y ŷ − 2z ẑ
)

, (4)

∇ · J =
∂Jx
∂x

+
∂Jy
∂y

+
∂Jz
∂z

= k + k − 2k = 0. (5)

We see that the current (4) is divergence-less, so it may be steady.

Note: we cannot prove that the current in question is indeed steady — we do not have

any information about its time dependence or independence, — but at least it may be steady

without causing a charge buildup.

1



(b) By Gauss theorem, the net flux of a divergence-less current through a complete surface

of some finite volume — like the cylinder in question — must be zero. So let’s check the

inflow/outflow of the current (4) through each side of the cylinder, namely its top disk, the

bottom disk, and the cylindrical wall.

The net current through the top end of the cylinder at z = H is

Itop =

∫∫

top

J · d2A =

∫∫

top

Jz(x, y, z = H) dx dy

=

∫∫

top

(−2kH) dx dy = −2kH ×Area(top) = −2kH × πR2

= −2πkHR2.

(6)

The overall − sign here indicates that the current flows into the cylinder.

On the other hand, the net current through the bottom end of the cylinder is zero because

at z = 0, Jz = 0. Indeed,

Ibot =

∫∫

bot

J · d2A = −

∫∫

bot

Jz(x, y, z = 0) dx dy = 0. (7)

Thus, we see that the current flows in from the top of the cylinder but it does not flow out

through the bottom end. Instead, it flows out through the outer cylindrical wall.

Indeed, in the cylindrical coordinates (s, φ, z),

J = ks ŝ − 2kz ẑ, (8)

hence its component ⊥ to the cylindrical wall at s = R is

J⊥ = +kR. (9)

Consequently, the net current through the wall is

Iwall =

∫∫

wall

J · d2A =

∫∫

wall

J⊥ d2A

= +kR ×Area(wall) = +kR× 2πRH

= +2πkHR2.
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Altogether, the net inflow/outflow of the current into/out from the cylinder is zero, as

it should be for a divergence-less current. But there is a current

I = 2πkHR2 (10)

flowing through the cylinder: It flows in through the top disk, then flows out through the

outer wall.

Problem 5.9:

(a) The current loop on figure 5.23(a) comprises two straight segments and two circular arcs

centered on the point P . The magnetic fields due to such wire segments are discussed in

detail in my notes on Biot–Savart–Laplace Law and its applications. In particular, for the

straight segments along lines crossing the point P — as both straight segments of figure

5.23(a) do — the magnetic field vanishes at point P . Consequently,

B(P ) = B[inner arc](P ) + B[outer arc](P ) + 0 + 0. (11)

As to the circular arcs,

B[inner arc](P ) =
µ0I

4π

φ

a
(+ẑ) (12)

where φ is the angle spanned by the arc — which seems to be close to π/2, although I am

not sure if it meant to be exactly π/2 or not — while ẑ is the unit vector ⊥ to the page,

specifically out from the page towards your eyes.

Similarly, for the outer arc,

B[inner arc](P ) =
µ0I

4π

φ

b
(−ẑ) (13)

where the −ẑ direction (into the page) stems from the clockwise direction of the current in

the outer arc. (Unlike the counterclockwise direction in the inner arc.)

Altogether, adding the fields of both arcs (as well as straight segments, which do not

contribute), we get the net magnetic field

B(P ) =
µ0I

4π

(

φ

a
−

φ

b

)

ẑ. (14)
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(b) The current loop on figure 5.23(b) comprises 2 straight segments, one circular arc centered

at P , and some closing segment at infinity (not shown) whose magnetic field may be neglected

since it’s so far away. Thus,

B(P ) = B[top straight wire](P ) + B[bottom straight wire](P ) + B[circular arc](P ). (15)

For each straight-line wire segment with geometry like this

P

s

α2

α1 (16)

the magnetic field at point P is

B[straight segment](P ) =
µ0I

4πs
×
(

cosα1 − cosα2

)

n̂ (17)

where s is the distance from P to the straight line along the wire segment, and n̂ is a unit

vector ⊥ to the whole plane including the wire and the point P . For each straight wire on

figure 5.23(b), n̂ is ⊥ to the page, and since the currents in both segments run clockwise

around P , n̂ = −ẑ points into the page. Also, both segments have s = R, while

For the top straight wire,

α1 = 90◦, α2 = 180◦ =⇒ cosα1 − cosα2 = 1, (18)

For the bottom straight wire,

α1 = 0◦, α2 = 90◦ =⇒ cosα1 − cosα2 = 1. (19)
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Consequently,

B[top](P ) = B[bottom](P ) =
µ0I

4πR
(−ẑ). (20)

As to the circular arc segment, its magnetic field is

B[arc] =
µ0I

4π

φ = π

R
(−ẑ), (21)

which also points into the page. Altogether, the net field at point P is

B(P ) =
µ0I

4π
×

2 + π

R
× (−ẑ). (22)

Problem 5.11:

A densely wound solenoid can be approximated by nearly-continuous sequence of circular

rings, each carrying the same current I, so the net magnetic field at point P on the axis of

the solenoid is

Bnet(P ) =
∑

rings

B[ring](P ) ≈

x2
∫

x1

B[ring @ x](P )×
N

L
dx (23)

where x is the coordinate along the solenoid’s axis and N/L is the density of rings, i.e., the

density of the solenoid’s winding.

For simplicity, let’s count x left from the point P , so that the ring@ x has its center

at distance x from P . The magnetic field of this ring at P is calculated in my notes on

Biot–Savart–Laplace Law and its applications as

B[ring @ x](P ) =
Iµ0
2

×
a2

(a2 + x2)3/2
. (24)

The direction of this field is ⊥ to the ring, i.e., along the solenoid’s axis, B = ±Bx̂, where

the ± sign depends on the direction of the current in the ring. The problem does not specify

this direction, but it must be the same direction for all the rings in the solenoid.
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Plugging the single ring’s field (22) into eq. (23) for the solenoid, we find

Bsolenoid =
Iµ0
2

× (±x̂)×
N

L

x2
∫

x1

a2 dx

(a2 + x2)3/2
. (25)

It remains to evaluate the integral in this formula. Following the textbook suggestion on

figure 5.25, let’s change the integration variable from x to

θ = arctan
a

x
=⇒ x =

a

tan θ
= a× ctan θ . (26)

Consequently,

dx = −
a dθ

sin2 θ
, (27)

a2 + x2 = a2 ×
(

1 + ctan2 θ
)

=
a2

sin2 θ
, (28)

1

(a2 + x2)3/2
=

sin3 θ

a3
, (29)

a2 dx

(a2 + x2)3/2
= − sin θ dθ = +d(cos θ), (30)

and therefore
x2
∫

x1

a2 dx

(a2 + x2)3/2
=

θ2
∫

θ1

d(cos θ)

a
= cos θ2 − cos θ1 . (31)

Finally, plugging this result into eq. (25), we arrive at

Bsolenoid =
NIµ0
2L

(

cos θ2 − cos θ1
)

(±x̂) =
NIµ0
2L

(

cos θ1 − cos θ2
)

(∓x̂). (32)

In particularly, inside an infinite solenoid,

θ1 ≈ 0, θ2 ≈ 180◦ =⇒ cos θ1 − cos θ2 ≈ 2, (33)

and therefore

Bsolenoid =
NIµ0
L

(∓x̂). (34)

PS: The direction of the magnetic field in eqs. (32) and (34) — +x̂ or −x̂ — follows from

the right hand rule: Wrap the finders of your right hand around the solenoid so that they
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point in the direction of the current, then your thumb points in the direction of the magnetic

field. For example, if in the solenoid on figure 5.25 the current flows up in the front side of

the solenoid (the side facing you) and flows down on the back side, then the magnetic field

points to the left of the page.

Problem 5.6:

When a volume charge with density ρ moves with velocity v, it creates a current density

J = ρv. (35)

Likewise, when a surface charge with density σ moves parallel to the surface, it creates a

surface current density

K = σv. (36)

Now let’s apply these formulae to the rotating charges at hand.

(a) When a disk such as phonograph record or CD rotates with angular velocity ω around

its center, a point at distance r from the center moves in a circle with linear speed v = ωr.

In vector notations,

v = ~ω × r = ωr φ̂. (37)

Consequently, a uniformly charged disk with surface charge density σ gives rise to the surface

current density

K = σωr φ̂. (38)

(b) For a rigid sphere rotating around its axis, a point with spherical coordinates (r, θ, φ)

moves along the latitude circle of radius r sin θ, so its velocity is

v = ω × r sin θ × φ̂. (39)

Consequently, when the sphere has a uniform charge density ρ, its rotation gives rise to

current density

J = ρω r sin θ φ̂. (40)
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Problem 5.12:

When a spherical shell of radius R rotates at angular velocity ω, a point with spherical

coordinates (θ, φ) moves in the latitude circle with speed

v =
circle length

rotation period
=

2πR sin θ

2π/ω
= ωR sin θ, (41)

or in terms of the velocity vector

v = ωR sin θ φ̂. (42)

For the uniformly charged sphere with surface charge density

σ =
Q

4πR2
(43)

the rotation gives rise to the surface current density

K = σv =
Qω sin θ

4πR
φ̂, (44)

Now consider the magnetic field of this density. By the Biot–Savart–Laplace Law,

B(P ) =
µ0
4π

∫∫

K×
rP − r(θ, φ)

|rP − r(θ, φ)|3
d2A(θ, φ). (45)

For the point P at the center of the sphere,

rP − r(θ, φ)

|rP − r(θ, φ)|3
= −

r̂(θ, φ)

R2
(46)

where r̂(θ, φ) is simply the unit vector in the direction (θ, φ). Consequently,

K×
rP − r(θ, φ)

|rP − r(θ, φ)|3
=

Qω sin θ

4πR

1

R2

(

−φ̂ × r̂) =
Qω sin θ

4πR3
(−θ̂). (47)

Integrating this expression over the area of the sphere, we have

d2A(θ, φ) = R2 sin θ dθ dφ, (48)
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hence

B(center) =
µ0
4π

∫∫

Qω sin θ

4πR3
(−θ̂)R2 sin θ dθ dφ =

Qωµ0
16π2R

π
∫

0

sin2 θ

2π
∫

0

dφ(−θ̂). (49)

It remains to perform the angular integrals in this formula. Please note that the unit

vector θ̂ depends on θ and φ, so we should re-express it in terms of the Cartesian components

x̂, ŷ, ẑ:

θ̂ = − sin θ ẑ + cos θ
(

cosφ x̂ + sinφ ŷ
)

. (50)

Integrating the components of this vector over φ, we get

2π
∫

0

sin θ dφ = 2π sin θ,

2π
∫

0

cos θ cosφ dφ = 0,

2π
∫

0

cos θ sin φ dφ = 0, (51)

and therefore
2π
∫

0

(−θ̂) dφ = +2π sin θ ẑ + 0x̂ + 0ŷ. (52)

Consequently,

π
∫

0

sin2 θ

2π
∫

0

dφ(−θ̂) = 2πẑ

π
∫

0

sin3 θ dθ (53)

where in the remaining integral

sin3 θ dθ = sin2 θ × d(− cos θ) = (1− cos2 θ) d(− cos θ) = d
(

− cos θ + 1
3 cos

3 θ), (54)

hence

π
∫

0

sin3 θ dθ =
(

− cos θ + 1
3 cos

3 θ
)

∣

∣

∣

θ=π

θ=0
=

(

+1− 1
3

)

−
(

−1 + 1
3

)

= 4
3 . (55)

Altogether,

B(center) =
Qωµ0
16π2R

× (2πẑ)×
4

3
=

Qωµ0
6πR

ẑ. (56)

9



Alternative solution:

The rotating charged sphere acts as a continuous sequence of current-carrying circular loops.

A loop at latitude θ has radius r = R sin θ and carries current

dI = K ×Rdθ =
Qω sin θ

4π
dθ (57)

The magnetic field of such a ring at the center of the sphere is

dB =
µ0 dI

2
×

r2

(r2 + z2)3/2
=

µ0Qω sin θ dθ

8π
×

R2 sin2 θ

R3
=

µ0Qω

8πR
sin3 θ dθ. (58)

Assuming the sphere is positively charged and spins counterclockwise (when viewed from

above the North pole θ = 0), the current (57) is counterclockwise in the xy plane, and the

magnetic field (58) points due North, in the +ẑ direction, Thus

dB[single ring] =
µ0Qω

8πR
ẑ sin3 θ dθ, (59)

and therefore the net magnetic field at the center is the sum — or rather the integral — of

the fields due to all such rings, thus

B(center) =
µ0Qω

8πR
ẑ

π
∫

0

sin3 θ dθ. (60)

Finally, performing the integral here exactly as in eqs. (54) and (55), we arrive at

B(center) =
µ0Qω

6πR
ẑ. (61)
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Problem 5.36:

I

z

Z

(62)

The net magnetic field at point Z is the sum of magnetic fields due to each side of the

square current loop. As explained in my notes Biot–Savart–Laplace Law (example#3), the

magnetic field of a straight wire segment has a simple form in terms of the triangle formed

by the two ends of the segment and the point where we measure the field,

I

α1α2

h
B( ) =

µ0I

4π

cosα1 − cosα2

h
n (63)

where n is the unit vector ⊥ to the plane of the triangle.

For the problem at hand, the triangles form sides of the pyramid (62) whose base is the

square current loop. Each triangle is isosceles with base w and height

h =
√

z2 + (w/2)2 , (64)

hence

α1 = arctan
h

(w/2)
, α2 = π − α1, (65)
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and therefore

cosα1 − cosα2 = 2 cosα1 =
2

√

1 + tan2 α1

=
w

√

h2 + (w/2)2
(66)

Altogether,

B[1 side] =
µ0I

4π

w

h
√

h2 + (w/2)2
n . (67)

Now consider the directions of the magnetic field from each side of the square. Each side

of the pyramid (62) makes angle

β = arctan
z

(w/2)
= arccos

(w/2)

h
= arcsin

z

h
(68)

with the horizontal, so the unit vector n makes angle β with the vertical. By the right hand

rule, n sticks out and up from the pyramid side, hence

nz = +cosβ = +
(w/2)

h
(69)

while

|nhorizontal| = sin β =
z

h
. (70)

Moreover, for each side of the pyramid, the horizontal component of the n vector points in

a different direction, East, North, West, and South, or in terms of xy components,

n1 = + sin β x̂ , n2 = + sin β ŷ , n3 = − sin β x̂ , n4 = − sin β ŷ . (71)

Consequently, after summing over contributions of all 4 sides of the square, the horizontal

components of the magnetic fields cancel out! On the other hand, the vertical components

of the 4 sides’ fields add up, thus

Bnet = B1 segment
(

n1 + n2 + n3 + n4

)

= B1 segment × 4 cos β ẑ , (72)

hence in light of eq. (67),

Bnet =
µ0I

4π
×

w

h
√

h2 + (w/2)2
×

2w

h
× ẑ =

µ0Iw
2

4π

2ẑ

h2
√

h2 + (w/2)2
. (73)

Note: this is the exact magnetic field at height z above the center of the square loop.
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Now consider the behavior of the field (73) at large distances from the loop, z ≫ w. In

this limit,

h =
√

z2 + (w/2)2 ≈ z ≫ w,
√

h2 + (w/2)2 ≈ h ≈ z, (74)

so the magnetic field (73) becomes

B(0, 0, z) ≈
µ0Iw

2

4π

2ẑ

z3
. (75)

Comparing this field to the field of a pure magnetic dipole, we note that the dipole moment

of the square loop is

m = Iw2 ẑ . (76)

hence

Bdipole(r) =
µ0
4π

3(m · r̂)r̂ − m

r3
=

µ0Iw
2

4π

3(r̂ · ẑ)r̂ − ẑ

r3
. (77)

For r in the +ẑ direction — directly above the dipole — we have

r3 = z3, 3(r̂ · ẑ)r̂ − ẑ = 3ẑ − ẑ = 2ẑ , (78)

and therefore the dipole field

Bdipole(0, 0, z) =
µ0Iw

2

4π

2ẑ

z3
. (79)

Comparing this formula to eq. (75), we see that at long distances from the square loop,

its magnetic field reduces to the pure dipole field of the magnetic moment (76). Quod erat

demonstrandum.
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Problem 5.50:

Consider two generally-shaped loops of wire carrying respective currents I1 and I2. The net

magnetic force on loop#1 from loop#2 is

F21 = I1

∮

loop#1

dr1 ×B2(r1) (80)

where B2(r1) is the magnetic field of the loop#2 at the point r1 on loop#1. By the Biot–

Savart–Laplace Law,

B2(r1) =
µ0I2
4π

∮

loop#2

dr2 ×G(r1 − r2) (81)

where I have denoted

G(r1 − r2) =
r1 − r2

|r1 − r2|3
. (82)

Altogether,

F21 =
µ0I1I2
4π

∮

L1

∮

L2

dr1 ×
(

dr2 ×G(r1 − r2)
)

. (83)

Now let’s work out the double vector product inside the loop integrals here. By the

BAC − CAB rule,

dr1 × (dr2 ×G) = dr2(dr1 ·G) − G(dr1 · dr2), (84)

hence

F21 =
µ0I1I2
4π

∮

L1

∮

L2

(

dr1 ·G(r1 − r2)
)

dr2 −
µ0I1I2
4π

∮

L1

∮

L2

(

dr1 · dr2
)

G(r1 − r2). (85)

Moreover, the first term on the RHS vanishes for any closed loops L1 and l2. Indeed, let’s
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rewrite the fist term as

X =
µ0I1I2
4π

∮

L2

dr2

∮

L1

dr1 ·G(r1 − r2) (86)

where we first integrate over the dr1 at fixed r2 and only then integrate over the dr2. Since

G(r1 − r2) =
r1 − r2

|r1 − r2|3
= ∇r1

−1

|r1 − r2|
, (87)

during the integration over dr1 at fixed r2 we have

dr1 ·G(r1 − r2) = dr1 · ∇r1

−1

|r1 − r2|
= d

(

−1

|r1 − r2|

)

, (88)

a total differential of a single-valued function of r1. Consequently,

∮

L1

dr1 ·G(r1 − r2) =

[

−1

|r1 − r2|

]@the end of L1

−

[

−1

|r1 − r2|

]@thebeginning of L1

= 0 (89)

because L1 is a closed loop — it begins and ends at the same point. Thus, in eq. (86), the

inner integral over dr1 at fixed r2 yields zero for any r2, so the outer integral is trivially zero.

Thus, we see that the first term in eq, (85) vanishes, so the entire force between the loops

is given by just the second term,

F21 = −
µ0I1I2
4π

∮

L1

∮

L2

(

dr1 · dr2
)

G(r1 − r2). (90)

In this formula, the G(r1 − r2) is antisymmetric between the two loops,

G(r2 − r1) = −G(r1 − r2), (91)

while everything else is symmetric. Consequently, the force (90) is manifestly antisymmetric,

F21 = −F12 (92)

in accordance with Newton’s Third Law.

15



Problem 5.16:

The magnetic field of the two solenoids obtains from the superposition principle:

Bnet(x, y, z) = B1(x, y, z) + B2(x, y, z) (93)

where the B1 field is created by the inner solenoid and the B2 field by the outer solenoid. As

explained in my notes on Ampere Law and its applications, the magnetic field of a standalone

infinitely long solenoid is

outside the solenoid B = 0.

inside the solenoid B = µ0In(±ẑ),
(94)

where ±ẑ is the direction of the solenoid’s axis whose sign depends on the direction of the

current in the solenoid’s winding. For the problem at hand, we take the +ẑ direction of the

two solenoid’s common axis on figure 5.42 to run from left to right, so relative to this positive

direction the current I1 in the inner solenoid flows counterclockwise while the current I2 in

the outer solenoid flows clockwise. By the right hand rule, this means that the B1 field of the

inner solenoid points left (the −ẑ direction) while the B2 field of the outer solenoid points

right (the +ẑ direction). Thus, for each solenoid we have

B2 =

{

+µ0I2n2 inside the outer solenoid,

0 outside the outer solenoid,
(95)

while

B1 =

{

−µ0I1n1 inside the inner solenoid,

0 outside the inner solenoid.
(96)

Finally, by the superposition principle, the combined field of the two solenoids is:

outside the outer solenoid Bnet = 0,

between the two solenoids Bnet = +µ0I2n2 ,

inside the inner solenoid Bnet = +µ0I2n2 − µ0I1n1 .

(97)
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Problem 5.18:

(a) Regardless of the solenoid’s cross-sectional shape, as long as the solenoid is infinitely long

and both the cross-section and the density N/L of wiring are uniform along its length, there

is translational symmetry in z direction of the solenoid’s axis. Consequently, the magnetic

field B(x, y, z) may depend on the transverse coordinates z and y but not on the z.

Another symmetry of the infinitely long uniform solenoid is the mirror reflection of the

z axis,

(x, y, z) → (+x,+y,−z), (98)

and since the magnetic field is an axial vector, it transforms like

Bx → −Bx , By → −By , Bz → +Bz . (99)

This symmetry requires

Bx(x, y,−z) = −Bx(x, y,+z),

By(x, y,−z) = −By(x, y,+z),

Bz(x, y,−z) = +Bz(x, y,+z),

(100)

which for a z–independent field immediate leads to

Bx(x, y, z) = 0, By(x, y, z) = 0 for any (x, y, z). (101)

Thus, the symmetries of the system require the magnetic field everywhere— inside or outside

the solenoid — to be parallel to the z axis.

(b) Proceeding exactly as in the textbook example 5.9 and using the Ampere loop as on

textbook figure 5.37, we find that the magnetic field outside the solenoid must be uniform,

the magnetic field outside the solenoid is also uniform, and the difference between them is

Binside − Boutside = µ0I(N/L) ẑ. (102)

This works for a solenoid of any cross-sectional shape, circular, square, star-shaped, whatever.

In addition, the magnetic field far outside the solenoid should diminish to zero at infinitely

17



long distance, hence

Boutside = 0, Binside = µ0I(N/L) ẑ. (103)

(c) The magnetic field of a toroid of any cross-sectional shape is

Boutside ≡ 0, Binside(r) =
µ0NI

2πs(r)
φ̂ , (104)

where s(r) is the distance between the point r inside the toroid and the rotational axis of

symmetry.

Now let’s make the overall radius of the toroid very large while keeping its cross-sectional

shape and size fixed. In this limit, a finite piece of the toroid looks like a slightly bend

solenoid, and in the strict R → ∞ limit the curvature goes away, and the toroid becomes

locally indistinguishable from an infinitely long straight solenoid. Also, the φ̂ direction of

the toroid becomes the ẑ direction of the solenoid, so the magnetic field (104) points along

the solenoid’s axis, just as it should for a long solenoid.

As to the magnitude of the magnetic field inside the toroid, in the R → ∞ limit,

s = R + finite ≈ R and hence

2πs ≈ 2πR = L, the length of the toroid. (105)

Consequently, the magnetic field (104) inside the toroid is approximately uniform — as it

should be inside the long solenoid — and its magnitude is

B =
µ0IN

L
, (106)

precisely as the field inside the long solenoid with winding density N/L.

Note: in order to keep the magnetic field (106) fixed as we make the toroid larger and

larger, we should increase the number of windings so that their density n = N/L = N/(2πR)

remains constant.
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Problem 5.24:

Given the vector potential A(x, y, z), the current density follows from the Ampere’s Law,

µ0J = ∇×B = ∇× (∇×A) = ∇(∇ ·A) − ∇2A. (107)

For the vector potentialA = kφ̂ (with k = const) in the cylindrical φ direction, the divergence

∇ ·A vanishes, so the current density is simply

J =
1

µ0
∇2A =

k

µ0
∇2φ̂ , (108)

but it’s actually easier to take the double curl that the Laplacian here. Indeed, using the

formulae from the front cover of the textbook for the curl in cylindrical coordinates, we find

∇× (kφ̂) =
1

s

∂ks

∂s
ẑ =

k

s
ẑ , (109)

∇×

(

k

s
ẑ

)

= −
∂k/s

∂s
φ̂ = +

k

s2
φ̂ , (110)

and therefore

B =
k

s
ẑ , J =

k

µ0

φ̂

s2
. (111)

Problem 5.25:

(a) Let A = −1
2r × B for a uniform magnetic field B. By the Leibniz for divergence and

curl of a vector product — see eqs. (6) and (8) inside the textbook cover —

∇ ·A = −1
2B · (∇× r) + 1

2r(∇×B), (112)

∇×A = −1
2(B · ∇)r + 1

2(r · ∇)B − 1
2r(∇ ·B) + 1

2B(∇ · r). (113)

However, since B is uniform, all of its space derivatives vanish, so the above formulae simplify
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to

∇ ·A = −1
2B(∇× r),

∇×A = −1
2(B · ∇)r + 1

2B(∇ · r).
(114)

On the right hand sides here,

∇× r = 0, ∇ · r = 3, (B · ∇)r = B, (115)

which gives us

∇ ·A = 0 (116)

and

∇×A = −1
2B + 3

2B = B. (117)

Quod erat demonstrandum.

(b) Without any boundary condition, there other vector potentials for the same uniform B,

even in the transverse gauge. Indeed, let

A(r) = −1
2r×B + ∇Λ(r) (118)

for some scalar function Λ(x, y, z). Any such vector potential has the same curl ∇×A = B,

regardless of Λ(r), but the divergence is Λ dependent, namely

∇ ·A = ∇2Λ. (119)

Thus, in order to preserve the transverse gauge condition we are limited to Λ’ which obey

the Laplace equation ∇2Λ(x, y, z) ≡ 0.

Given enough boundary conditions for the vector potential A(r), the Laplace equation

for the Λ(x, y, z) would have no solutions except for the trivial Λ = const — which would

mean unique A(r) = −1
2r × B. But in the absence of any boundary conditions — or
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asymptotic conditions at r → ∞ — the Laplace equation ∇2Λ = 0 has an infinite series of

independent solutions. In tensor notations, such solutions have general form

Λ(r) =
∑

i=x,y,z

T
(1)
i ri +

∑

i,j

T
(2)
ij rirj +

∑

i,j,k

T
(3)
ijk rirjrk + · · · (120)

where each T (n) is an n-index totally symmetric tensor obeying a zero-trace condition,

∑

i=x,y,z

T
(2)
ii = 0,

∑

i=x,y,z

T
(3)
iik = 0 for each k, etc. (121)

Consequently, there is an infinite family of vector potentials which all have the same curl

and zero divergence.

For example, for the uniform B field in +ẑ direction, we may use A = −1
2r × B =

(B/2)(xŷ − yx̂), but we may also use A = Bxŷ or A = −Byx̂ — as well as an infinite

choice of more complicated vector potentials.

Problem 5.26:

According to textbook equation (5.65), for a thick conductor

A(r) =
µ0
4π

∫∫∫

J(r′)

|r− r′|
d3Vol

′
. (122)

The current in a long straight wire has uniform direction ẑ, so the vector potential (122)

at any point r — inside or outside the wire — must also point in the same direction.

Furthermore, by the cylindrical symmetry of the wire, we should have

A(s, φ, z) = A(s only) ẑ, (123)

where the integral for the A(s) looks exactly like the electrostatic potential of a uniformly
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charged wire. Indeed, by Gauss Law for the charged wire,

E(s) =



















λ

2πǫ0

1

s
outside the wire, for s > R,

λ

2πǫ0

s

R2
inside the wire, for s < R,

(124)

hence

V (s) =



















−
λ

2πǫ0
× ln

s

R
outside the wire, for s > R,

+
λ

2πǫ0

R2 − s2

2R2
inside the wire, for s < R.

(125)

By analogy, the vector potential of the infinitely long straight wire is

A(s) =















−
µ0I

2π
× ln

s

R
outside the wire, for s > R,

+
µ0I

2π

R2 − s2

2R2
inside the wire, for s < R.

(126)

Alternative solution:

Instead of working by analogy with the electric potential of a charged wire, we may first use

the Ampere’s law to find the B field, and then solve for the A = A(s)ẑ which has the right

curl. As explained in my my notes on the Ampere’s Law (example#1), the magnetic field

inside and outside the wire is

B = B(s)φ̂ where B(s) =















µ0I

2π

1

s
outside the wire, for s > R,

µ0I

2π

s

R2
inside the wire, for s < R.

(127)

We need to match that to

B = ∇×
(

A(s)ẑ
)

= −
dA

ds
φ̂ =⇒ B(s) = −

dA

ds
, (128)

hence

A(s) =

const
∫

s

B(s′) ds′. (129)

Setting the constant reference point here to the surface of the wire and integrating the wire’s
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B field from eq. (127), we arrive at

A(s) =















−
µ0I

2π
× ln

s

R
outside the wire, for s > R,

+
µ0I

2π

R2 − s2

2R2
inside the wire, for s < R.

(126)

Problem 5.30:

Textbook equation (5.68) gives the vector potential of a rotating charged spherical shell of

surface charge density σ,

Asphere(r) =
µ0σ

3
f(r, R) (~ω × r) where f(r, R) =







R for r < R,

R4

r3
for r > R.

(130)

A solid ball of uniform volume charge density ρ can be thought as a sum of co-rotating

concentric shells of radii r′ ranging from 0 to R of surface density σ = ρ dr′. Hence, by the

superposition principle,

Aball(r) =
µ0ρ

3
F (r, R) (~ω × r) where F (r, R) =

R
∫

0

f(r, r′) dr′. (131)

All we need to do is to perform the integral here.

For r < R — i.e., for calculating the A inside the ball — we need to include shells with

both r′ < r and r′ > r. Consequently,

F (r < R) =

r
∫

0

f(r < r′) dr′ +

R
∫

r

f(r > r′) dr

=

r
∫

0

r′ dr′ +

R
∫

r

r′4

r3
dr′

=
r2

2
+

R5 − r5

5r3

=
3r5 + 2R5

10r3
,

(132)
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and therefore

inside the ball, A(r) =
µ0ρ

30

3r5 + 2R5

r3
(~ω × r) (133)

Our last task is to take the curl of this vector potential to get the magnetic field B. In

general,

∇×
(

F (r) (~ω × r)
)

= F (r)∇× (~ω × r) + ∇F (r)× (~ω × r)

= F (r) (2~ω) +
dF

dr
× r̂(~ω × r)

= 2F ~ω + rF ′(R)
(

r̂× (~ω × r̂) = ~ω − (r̂ · ~ω)r̂
)

= (2F + rF ′)~ω − rF ′ (r̂ · ~ω)r̂.

(134)

so for the F (r) as in eq. (133),

B(r) =
µ0ρ

30

(

12r5 − 2R5

r3
~ω +

6r5 − 6R5

r3
(r̂ · ~ω)r̂

)

. (135)
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