
PHY–352 K. Solutions for problem set #12.

Problem 7.2:

(a) Suppose at some time t after the switch is closed the capacitor has charge Q(t). Then

at that moment of time, the voltage on the capacitor is

V (t) =
Q(t)

C
, (1)

and the same voltage also applies to the resistor R. Consequently, the current through the

resistor is

I(t) =
V (t)

R
=

Q(t)

RC
. (2)

The same current also flows through the capacitor itself, or rather it flows from the positive

plate of the capacitor through the wires and the resistor all the way to the negative plate of

the capacitor. This current makes the capacitor discharge at the rate I(t), thus its charge

diminishes with time according to

dQ

dt
= −I(t) = −Q(t)

RC
(3)

Solving this first-order differential equation gives us exponentially-decreasing charge

Q(t) = Q0 × exp(−t/τ) (4)

where Q0 is the original charge at time t = 0 when the switch was closed, and

τ = R× C (5)

is the time constant of the RC circuit: After time t = τ , the charge has diminished to

Q = exp(−1)×Q0 ≈ 0.37Q0.

1



The voltage on the capacitor and the current through the resistor also decrease expo-

nentially with time,

V (t) = V0 × exp(−t/τ), I(t) = I0 × exp(−tτ), (6)

for the same time constant τ as the charge Q(t), but

V0 =
Q0

C
and I0 =

V0
R

=
Q0

RC
. (7)

(b) The instantaneous electric power dissipated by the resistor is P = I2R. For the expo-

nentially decreasing current (6),

P (t) = RI2(t) = RI20 × exp(−2t/τ), (8)

so integrating this power over time we obtain the net dissipated energy as

W =

∞
∫

0

P (t) dt = RI20 ×
∞
∫

0

exp(−2t/τ) dt = RI20 × τ

2
. (9)

In light of eq. (5) for the time constant, this energy is

W = RI20 × RC

2
=

C

2
× (RI0)

2 =
C

2
× V 2

0 . (10)

On the other hand, the energy stored in the capacitor before it began to discharge through

the resistor is

U0 =
C

2
× V 2

0 , (11)

so we see that W = U0: The net energy dissipated by the resistor is precisely the energy

originally stored in the capacitor. Quod erat demonstrandum.
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(c) Now consider the circuit on textbook figure 7.5(b). For simplicity, let’s neglect the

internal resistance of the battery, so the voltage V0 on the battery stays constant at all

times. Let’s also assume that the capacitor was completely discharged by the time t = 0

when the switch was closed.

Suppose at some time t > 0 the capacitor has voltage V (t) between its plates, so its

charge is Q(t) = C × V (t). At the same time, the voltage between the resistor’s plates is

VR(t) = V0 − V (t), (12)

so the current flowing through the resistor — and hence through the whole circuit — is

I(t) =
VR(t)

R
=

V0 − V (t)

R
. (13)

From the capacitor’s point of view, the direction of this current is from the negative plate to

the positive plate, through the resistor and the battery, so this current charges the capacitor.

Thus,

dQ

dt
= +I(t) = +

V0 − V (t)

R
, (14)

so the voltage V (t) between the capacitor’s plates obeys

dV

dt
=

1

C
× dQ

dt
=

V0 − V (t)

RC
. (15)

The solution to this differential equation with the initial condition V (0) = 0 is

V (t) = V0 ×
(

1 − exp(−t/τ)
)

(16)

for the time constant

τ = R× C, (17)

exactly as in eq. (5) in part (a).

As to the time dependence of the capacitor charge Q(t) and the charging current I(t),

they follow from the time-dependent voltage (16):

Q(t) = CV0 ×
(

1 − exp(−t/τ)
)

, I(t) =
V (t)

R
=

V0
R

× exp(−t/τ). (18)
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(d) The instantaneous power delivered by the battery is P (t) = V0 × I(t), so for the expo-

nentially decreasing current (18),

P (t) = V0 ×
V0
R

× exp(−t/τ). (19)

The net electrical work by the battery while the capacitor is charging is the time integral of

this power, thus

Wnet =

∞
∫

0

P (t) dt =
V 2
0

R
×

∞
∫

0

exp(−t/τ) dt =
V 2
0

R
× τ. (20)

For the time constant τ = RC we have found in part (c), the bet work by the battery

amounts to

Wnet =
V 2
0

R
× RC = C × V 2

0 . (21)

Some of this electric work goes towards charging the capacitor, the rest is dissipated by

the resistor. The capacitor’s energy is

U(t) =
C

2
× V 2(t) (22)

where the voltage increases with time according to eq. (16). Asymptotically, the capacitor

voltage approaches the battery voltage V0, so its energy gets to

Unet =
C

2
× V 2

0 . (23)

Note that this energy is only a half of the electric work (21) delivered by the battery, so the

other half of this work is dissipated by the resistor,

Wdissipated = Wnet − Unet =
C

2
× V 2

0 . (24)

Note: this dissipated energy is exactly the same as in part (b) because the current I(t)

through the resistor has exactly the same form as in part (b), cf. eqs. (6) and (18).
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Problem 7.5:

The voltage on the battery V = E − rI is equal to the voltage V = RI on the load,

E − r × I = R× I, (25)

hence the current through the circuit is

I =
E

r +R
. (26)

The power delivered to the load is

P = V × I = R× I2 =
R

(r +R)2
× E2 . (27)

To maximize this power as a function of the load’s resistance R we need R = r. Indeed,

dP

dR
= E2 ×

(

1

(r +R)2
− 2R

(r +R)3

)

= E2 × r −R

(r +R)3
, (28)

thus the power increases with R for R < r but decreases for R > r, with the maximum at

R = r.

Problem 7.7:

(a) For the magnetic field B pointing into the page and the metal bar moving to the right,

the direction of the vector product v × B is up-the-page. Consequently, the Lorentz force

F = (−e)v × B pushes the electrons in the moving bar down-the-page, which makes the

current flow in the opposite direction, up-the-page. That is, the current flows up through

the moving bar; through the rest of the circuit it flows counter-clockwise. In particular, in

the resistor at the left end of the circuit, the current flows down.

Now consider the magnitude of this current. The EMF induced in the moving bar is

E = ~ℓ · (v ×B) = ℓvB. (29)

I assume the resistance R of the resistor is much larger that the resistance of the moving

bar or the connecting wires, so we may approximate the net resistance of the circuit as R.
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Consequently, the current through the circuit due to the EMF (29) induced in the moving

bar is

I =
E

Rnet
≈ E

R
=

ℓvB

R
. (30)

(b) The magnetic force on the bar due to the current (30) is

F = I~ℓ×B . (31)

For the current flowing up-the-page through the bar and the magnetic field direction into-

the-page, the direction of this force is to the left, opposite to the bar’s velocity, while its

magnitude is

F = I × ℓB =
ℓ2B2

R
× v. (32)

(c) By Newton’s second law,

m
dv

dt
= F . (33)

As we saw in part (b), the force on the moving bar is in the opposite direction to the bar’s

velocity, while the force’s magnitude (32) is proportional to the speed. Therefore,

dv

dt
= −F

m
= −ℓ2B2

mR
× v. (34)

The solution of this differential equation is an exponentially decreasing velocity,

v(t) = v0 × exp

(

− t

τ

)

for τ =
mR

ℓ2B2
. (35)
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(d) As the bar slows down, its kinetic energy is dissipated as the Joule heat in the resistor.

Indeed, the current (30) due to EMF induced in the moving bar dissipates power

P = I2R =
ℓ2B2 v2

R
, (36)

and this power is precisely the rate at which the moving bar looses its kinetic energy,

−dUkin

dt
= −v · F = +v × F = v2 × ℓ2B2

R
= P. (37)

Consequently, the net energy dissipated while the bar slows down to a complete stop should

equal to the initial kinetic energy of the bar.

Let’s check this fact directly from the equation (36):

W =

∞
∫

0

P (t) dt =

∞
∫

0

ℓ2B2

R
×v2(t) dt =

ℓ2B2

R
×

∞
∫

0

v20×e−2t/τ dt =
ℓ2B2

R
×v20×

τ

2
. (38)

For the time constant (35) obtained in part (c), this formula yields

W =
ℓ2B2

R
× v20

2
×
(

τ =
mR

ℓ2B2

)

=
v20
2

×m, (39)

which is precisely the initial kinetic energy of the particle. Quod erat demonstrandum.

Problem 7.8:

(a) In the plane of the figure 7.18, the magnetic field above the wire is directed into-the-page,

while its magnitude depends only on the up-the-page coordinate y, specifically

B(y) =
µ0I

2πy
(40)

Consequently, the flux through the square loop is

Φ =

a
∫

0

dx

s+a
∫

s

dy B(y) = a×
s+a
∫

s

dy
µ0I

2πy
= a× µ0I

2π
× ln

s+ a

s
. (41)
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(b) The EMF induced in a moving straight wire is E = ~ℓ · (v ×B). For the magnetic field

pointing into-the-page while the loop moves up-the-page, the direction of the vector product

v × B is left. Consequently, there is no EMF induced in the vertical wires, while there is

leftward EMF induced in the horizontal wires. Relative to the loop, the EMF in the bottom

wire is clockwise while the EMF in the top wire is counterclockwise.

The magnitudes of these EMFs are

Ebottomwire = a× v × B(y = s) = a× v × µ0I

2πs
,

E topwire = a× v × B(y = s+ a) = a× v × µ0I

2π(s+ a)
,

(42)

with a larger EMF in the bottom wire. Consequently, the net EMF induced in the square

loop is clockwise, so the current in the loop flows clockwise.

As to the magnitude of the net EMF,

Enet = Ebottomwire − E topwire =
avµ0a

2π

(

1

s
− 1

s+ a

)

. (43)

Let’s compare this magnitude with the Faraday’s law,

Enet = −dΦ

dt
, (44)

The magnetic flux (41) from part (a) changes with time because s changes when the loop

moves up,

ds

dt
= v. (45)

Consequently,

d

dt
ln

s+ a

s
= v × d

ds
ln

s + a

s
= v ×

(

1

s+ a
− 1

a

)

, (46)

and therefore

−dΦ

dt
= −aµ0I

2π

d

dt
ln

s+ a

s
= +

aµ0I

2π
×

(

1

s
− 1

s+ a

)

× v, (47)

in perfect agreement with the net EMF (43) induced in the loop.
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(c) When the loop moves to the right — parallel to the current-carrying wire — the magnetic

flux through the loop does not change, so we expect zero net EMF induced in the loop.

To see how this works, consider the EMFs E = ~ℓ× (v ×B) induced in each side of the

square loop. For B pointing into-the-page while the velocity vector v points right, the vector

product v×B points up-the-page. Consequently, there is not EMF induced in the horizontal

top or bottom wires, while there is upward EMF induced in the vertical left or right wires.

By symmetry, the upward EMFs in the left and the right wires are equal, but their directions

relative to the loop are opposite: clockwise in the left wire but counterclockwise in the right

wire. Thus, the EMFs induced in the two vertical wire precisely cancel each other, and the

net EMF in the loop is zero.

Problem 7.12:

Inside a long solenoid, the magnetic field is uniform and points along the solenoid’s axis. For

a circular loop of radius a/2 completely inside the solenoid and ⊥ to its axis, the magnetic

flux is

Φ = B × Area = B × π(a/2)2. (48)

When the magnetic field changes with time, the flux also changes,

Φ(t) = B(t)× π(a/2)2, (49)

which leads to the EMF induced in the loop,

E = −dΦ

dt
= −dB

dt
× π(a/2)2. (50)

For the harmonically oscillating magnetic field B(t) = B0 × cos(ωt), this EMF is

E = −π(a/2)2 ×B0 ×
d cos(ωt)

dt
= +π(a/2)2 × B0 × ω × sin(ωt). (51)

Consequently, there is a harmonically oscillating current in the loop,

I(t) =
E(t)
R

=
π(a/2)2B0ω

R
× sin(ωt). (52)
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Problem 7.17:

(a) First, let’s find the magnetic flux through the loop as a function of the current I in the

solenoid. The magnetic field inside the solenoid (without an iron core) is

B = µ0In ẑ (53)

while outside the solenoid the magnetic field is negligible. Consequently, the magnetic flux

through any loop surrounding the solenoid is simply the net flux through the solenoid itself,

Φ = B · asolenoid = µ0In× πa2. (54)

When the current through the solenoid changes, this flux changes at the rate

dΦ

dt
=

dI

dt
× µ0n(πa

2), (55)

which induces the EMF in the loop surrounding the solenoid,

E = −dΦ

dt
= −dI

dt
× µ0n(πa

2). (56)

Consequently, there is a current in the loop

Iloop =
E
R

= −dI

dt
× µ0n(πa

2)

R
. (57)

The ‘−’ sign here reflects the Lenz rule: the current in the loop oppose the changes of

the current in the solenoid. Thus, if the current in the solenoid is clockwise (as shown on

figure 7.28) and increasing, then the current in the loop is counterclockwise.
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(b) Now suppose instead of changing the current in the solenoid, we simply pull the loop off

the solenoid and move it far away. Moving the loop leads to the motional EMF, which also

obtains from the Faraday’s law,

E = −dΦ

dt
, (58)

whatever the reason for changing of the magnetic flux. Consequently, the current in the loop

is

Iloop(t) =
E(t)
R

= − 1

R
× dΦ

dt
, (59)

Integrating this current over time, we obtain the net charge which has flown through the

loop,

Qloop =

∫

Iloop dt = − 1

R

∫

dΦ

dt
dt = − 1

R
×∆Φ =

Φinit − Φfinal

R
(60)

In particular, when the loop is removed from the solenoid to a far-away place without a

magnetic field, we have Φfinal = 0 and therefore

Qloop =
Φinit

R
. (61)

If the loop initially surrounds the solenoid as in figure 7.28, then the initial flux through the

loop is the flux in the solenoid as in eq. (54), hence

Qloop =
µ0In(πa

2)

R
. (62)

For example, for a solenoid of radius a = 1 cm and density n = 1000 loops/m carrying

current I = 1 A, and the loop having net resistance R = 4 Ω (which mostly comes from the

resistor), the net charge flowing through the loop as it is removed is about Q = 10−7 C.
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Problem 7.19:

The mathematical relation between the induced electric field and the time-dependent mag-

netic field is very similar to the relation between the magnetics field itself and the electric

current density. Indeed, compare the equations

∇×E = −∂B

∂t
, ∇ · E = 0 〈〈 assuming ρ = 0 〉〉 (63)

and

∇×B = µ0J, ∇ ·B = 0. (64)

Similar equations call for similar solutions, hence the Biot–Savart–Laplace-like formula for

the induced electric field:

E(r, t) = − 1

4π

∫∫∫

∂B(r′, t)

∂t
× r− r′

|r− r′|3 d
3Vol

′

. (65)

For the toroidal coil in question, there is strong magnetic field inside the coil but no

field outside the coil. For a thin toroid (compared to its radius), we may integrate over the

cross-section while treating the r− r′ as approximately constant, thus

∫∫

cross
section

∂B

∂t
=

dΦ

dt
φ̂ (66)

where Φ is the net magnetic flux through the toroid, and hence

E(r) = −dΦ

dt
× 1

4π

∮

length

dr′ × r− r′

|r− r′|3 . (67)

The integral here is precisely the same integral as for calculating the magnetic field of

a circular current loop, cf. the textbook example 5.6 (page 227). For generic points r, this
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integral is a mess of elliptic functions, but for the r lying on the symmetry axis of the toroid,

the integral simplifies to

∮

length

dr′ × r− r′

|r− r′|3 =
2πa2

(a2 + z2)3/2
ẑ , (68)

exactly as in the textbook equation (5.41). For the present problem, eq. (68) means that on

the toroid’s axis, the electric field is

E(0, 0, z) = −dΦ

dt
× a2

2(a2 + z2)3/2
ẑ (69)

Finally, the magnetic field inside the toroid is explained in the textbook example 5.10

(pages 238–239),

Binside =
µ0IN

2πs
φ̂ , (5.60)

For a thin toroid with w ≪ a this field is approximately uniform (inside the toroid), so the

flux through the toroid is simply

Φ = hw × Bφ = µ0IN × hw

2πa
. (70)

While the geometry of the toroid should be time-independent, the current I may change

with time, which leads to a time-dependent magnetic flux, changing at the rate

dΦ

dt
=

µ0Nhw

2πa
× dI

dt
. (71)

Plugging this formula into eq. (69) for the electric field, we finally arrive at

E(0, 0, z) = (−ẑ)× dI

dt
× µ0Nhwa

4π(a2 + z2)3/2
. (72)
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Problem 7.51:

First, let’s find the magnetic field of the moving wire. Since the wire is moving at a constant

velocity v that is much less than the speed of light c, we may use the quasi-static approxi-

mation: The magnetic field B(r, t) is approximately the same as the field of the stationary

wire located wherever the wire happens to be at time t. In particular, at t = 0 when the

wire runs along the z axis, we have

B(t = 0, r) =
µ0I

2π

φ̂

s
=

µ0I

2π

x ŷ − y x̂

x2 + y2
. (73)

For future convenience, let’s express this field in terms of the vector potential,

B = ∇×A for A(t = 0, r) =
µ0I

2π
ln(s) ẑ =

µ0I

4π
ln(x2 + y2) ẑ . (74)

At other times t 6= 0, we have similar formulae for the magnetic field and the vector potential

in terms of the relative coordinates x−Xwire(t) = x and y − Ywire(t) = y − vt, thus

B(t, r) =
µ0I

2π

x ŷ − (y − vt) x̂

x2 + (y − vt)2
, (75)

A(t, r) =
µ0I

4π
ln
(

x2 + (y − vt)2
)

ẑ . (76)

Note: in a coordinate frame moving with the wire, the magnetic field (73) and the vector

potential (74) are time-independent. But in the lab frame, the magnetic field at any fixed

point (x, y, z) changes with time because the distance to the moving wire changes with time,

thus

(

∂B(t; x, y, z)

∂t

)

fixed lab frame (x,y,z)

6= 0. (77)

Consequently, in the lab frame there is electric field induced by the time-dependent magnetic

field.
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The induced electric field E(t, r) obtains from solving the Induction Law equation as

well as the Gauss Law for ρ ≡ 0,

∇×E(t, r) = −∂B(t, r)

∂t
, ∇ · E(t, r) = 0. (78)

The simplest way to solve these is in terms of the vector potential A(t, r) and the scalar

potential V (t, r),

E(t, r) = −∂A(t, r)

∂t
− ∇V (t, r). (79)

The vector potential here should be exactly as in eq. (76), so that ∇×A(r, t) is the time-

dependent magnetic field; this will make the electric field (77) obey the Induction Law for

any V (t, r).

As to the scalar potential, it should take care of the Gauss Law by obeying the Poisson

equation

∇2V (t, r) = − ∂

∂t

(

∇ ·A(t, r)
)

. (80)

Fortunately, the vector potential (76) at hand has zero divergence —

∇ ·A =
∂Az

∂z
= 0 (81)

— hence the scalar potential should obey ∇2V = 0, and the simplest solution to this Laplace

equations is simply V (x, y, x, t) ≡ 0.

Consequently,

Einduced(t, r) = − ∂

∂t
A(t, r)

= − ∂

∂t

(

µ0I

4π
ln
(

x2 + (y − vt)2
)

ẑ

)

= −µ0I

4π

∂ ln
(

x2 + (y − vt)2
)

∂t
ẑ

= +
µ0I

4π

2v(y − vt)

x2 + (y − vt)2
ẑ ,

(82)
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In particular, at time t = 0 when the wire runs along the z axis,

E(t = 0; x, y, z) =
µ0Iv

2π

y ẑ

x2 + y2
, (83)

or in cylindrical coordinates

E(t = 0; s, φ, z) =
µ0Iv

2π

sinφ

s
ẑ . (84)

Problem 7.22:

(a) Let’s assume the little loop is much smaller than the big loop or the distance between

the loops, a ≪ b, z, so the magnetic field of the big loop is approximately uniform over the

little loop,

Bbig(r ∈ little loop) ≈ const. (85)

Evaluating this approximately uniform field at the little loop’s center — which happens to

lie on the big loop’s axis — we find

Bbig(r ∈ little loop) ≈ Bbig(0, 0, z) =
µ0Ibig

2

b2

(b2 + z2)3/2
ẑ , (86)

where the second equality here is the textbook equation (5.41) for the magnetic field of a

circular loop. Consequently, the magnetic flux (of the big loop field’s) through the little loop

is

Φlittle ≈ alittle ·Bbig(0, 0, z) = πa2 × Bz
big(0, 0, z) =

µ0Ibig
2

× πa2 × b2

(b2 + z2)3/2
. (87)
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(b) Now consider the magnetic flux of the little loop through the big loop. Again, we assume

that the little loop is very small compared to the distance to the big loop, and this allows

us to use the dipole approximation,

Blittle(r
′) =

µ0
4π

3(m · r̂′)r̂′ − m

r′3
(88)

where

m = (πa2)Ilittle ˆ̂z (89)

is the magnetic moment of the little loop, and the radius vector r′ is taken relative to the

little loop’s center. In cylindrical coordinates, the magnetic field (88) becomes

Blittle(s, φ, z) =
µ0(πa

2)Ilittle
4π

(

2z′2 − s2

(z′2 + s2)5/2
ẑ +

3z′s

(z′2 + s2)5/2
ŝ

)

(90)

where z′ = z − zlittle loop.

Now let’s calculate the flux of this magnetic field through the big loop. Spanning the

big loop with a flat disk of radius b in the xy plane — hence at constant z = 0 while

z′ = −zlittle loop, — we have

Φbig =

∫∫

disk

Bz
little(s, φ) d

2A =

b
∫

0

2πs ds× µ0(πa
2)Ilittle
4π

2z′2 − s2

(z′2 + s2)5/2

=
µ0(πa

2)Ilittle
2

×
b

∫

0

(2z′2 − s2) s ds

(z′2 + s2)5/2

〈〈 changing variables from s to ν = s2 + z′2 〉〉

=
µ0(πa

2)Ilittle
2

×
b2+z′2
∫

z′2

(3z′2 − ν)× 1
2dν

ν5/2

=
µ0(πa

2)Ilittle
2

×
b2+z′2
∫

z′2

d

(

− z′2

ν3/2
+

1

ν1/2

)

=
µ0(πa

2)Ilittle
2

×
((

1√
b2 + z′2

− z′2

(b2 + z′2)3/2

)

−
(

1

|z′| − z′2

|z′|3
))

=
µ0(πa

2)Ilittle
2

× b2

(b2 + z′2)3/2

(91)
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Altogether,

Φbig =
µ0Ilittle

2
× (πa2)× b2

(b2 + z2little)
3/2

. (92)

Alternative solution:

In the dipole approximation to the little loop’s magnetic field, the vector potential is

Alittle(r
′) =

µ0
4π

m× r̂′

r′2
, (93)

or in cylindrical coordinates

Alittle(r
′) =

µ0(m = πa2Ilittle)

4π

s′

(s′2 + z′2)3/2
φ̂′. (94)

In terms of this vector potential, the magnetic flux through the big loop is

Φbig =

∮

big loop

Alittle(r
′) · dr′. (95)

Geometrically, the big loop is located at fixed s′ = b and fixed z′ = −∆z = −zlittleloop

(relative to the little loop), while φ′ span the full circle from 0 to 2π. Consequently,

Alittle(r
′) · dr′ =

µ0(πa
2)Ilittle
4π

× b

b2 + z2ℓ )
3/2

× b dφ , (96)

so the magnetic flux (95) is simply

Φbig =
µ0(πa

2)Ilittle
4π

× b

b2 + z2ℓ )
3/2

× 2πb =
µ0Ilittle

2
× (πa2)× b2

(b2 + z2little)
3/2

. (92)
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(c) In terms of mutual inductances, eq. (87) from part(a) becomes

Φlittle = Ml,b × Ibig (97)

where Ml,b =
µ0
2

× πa2 × b2

(b2 +∆z2)3/2
. (98)

Similarly, eq. (92) from part (b) becomes

Φbig = Mb,l × Ilittle (99)

where Mb.l =
µ0
2

× πa2 × b2

(b2 +∆z2)3/2
. (100)

By inspection of eqs (98) and (100), the two mutual inductances are equal,

Ml,b = Mb,l . (101)

Quod erat demonstrandum.

Problem 7.29:

The geometry of the coil is shown on textbook figure 7.34 (page 327): rectangular cross-

section (b − a) × h, where a is the inner radius of the toroid and b is the outer radius.

Assuming the toroid is uniformly and densely wound, the magnetic field vanishes anywhere

outside the coil, while inside the coil

Binside =
µ0NI

2πs
φ̂ . (102)
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According to the textbook equation (7.35), the net energy stored in this magnetic field is

U =
1

2µ0

∫∫∫

whole
space

B2 d3Vol

=
1

2µ0

∫∫∫

toroid

(

µ0NI

2πs

)2

d3Vol

=
1

2µ0
× µ20N

2I2

4π2
×

h
∫

0

dz

b
∫

a

2πs ds

s2

=
µ0N

2I2

8π2
× h× 2π ln

b

a

=
I2

2
× µ0N

2h ln(b/a)

2π
.

(103)

On the other hand, treating the toroid as an inductor with self-inductance

L =
µ0N

2h ln(b/a)

2π
(7.28)

(see the textbook example 7.11 (page 325) for the calculation), we expect the net magnetic

energy stored in this inductor to be

U =
I2L

2
=

I2

2
× µ0N

2h ln(b/a)

2π
. (104)

By inspection, this is precisely the same energy as in eq. (103).

Problem 7.31:

(a) Once the switch has been in position A for a long time, the current reaches a steady

value

I0 =
E0
R

. (105)

When at time t0 = 0 the switch is moved to position B, the current through the inductor

cannot suddenly change, thus I(t = 0) = I0.
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But after that, the current starts changing, which generates the EMF in the inductor

E(t) = −L
dI

dt
(106)

and hence the voltage on the resistor

VR = −VL = +E = −L
dI

dt
. (107)

At the same time, the voltage on the resistor is related to the current through it by the

Ohm’s law,

VR(t) + R× I(t), (108)

hence the differential equation

−L
dI

dt
= R× I (109)

for the time dependence of the current I(t). The solution of this equation is obviously

I(t) = I0 × e−t/τ (110)

where the time constant τ obtains as

L

τ
= R =⇒ τ =

L

R
. (111)

(b) The electric power going to the resistor is

P (t) = I2(t)× R, (112)

so the net energy delivered to the resistor after the switch is thrown is

Wnet =

∞
∫

0

RI2(t) dt. (113)
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For the current changing with time according to eq. (110),

RI2(t) = RI20 × e−2t/τ , (114)

hence

Wnet =

∞
∫

0

RI20 × e−2t/τ dt = RI20 × τ

2
. (115)

Or in light of eq. (111) for the time constant τ ,

Wnet = 1
2L× I20 . (116)

(c) The magnetic energy stored in the inductor at the time the switch was thrown was

U = 1
2L× I20 . (117)

By inspection, this is precisely the net electric energy (116) delivered to the resistor after

the switch was thrown.
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