
PHY–352 K. Solutions for midterm exam #1.

Problem 1(a):

A static electric field must have zero curl, ∇× E = 0 everywhere in space. Let’s check this

conditions for the fields (1–3). Using

∇× E = (∇Ex)× x̂ + (∇Ey)× ŷ + (∇Ez)× ẑ (1)

we find:

∇× Ea = [2αyx̂ + 2α(x+ y)ŷ]× x̂ + [2α(x+ y)x̂ + 2αŷ]× ŷ − [6αzẑ]× ẑ

= 2αy(x̂× x̂) + 2α(x+ y)(ŷ × x̂ + x̂× ŷ) + 2αx(ŷ × ŷ) − 6αz(ẑ× ẑ)

= 0 + 0 + 0 − 0 = 0, (2)

∇× E2 = [2αxyx̂ + α(x2 + 3y2)ŷ]× x̂ − [2αxyŷ + α(3x2 + y2)]x̂]× ŷ

〈〈 using x̂× x̂ = ŷ × ŷ = 0 and x̂× ŷ = −ŷ × x̂ = ẑ 〉〉

= 0 − α(x2 + 3y2)ẑ − 0 − α(y2 + 3x2)ẑ

= −4α(x2 + y2)ẑ 6= 0, (3)

∇× E3 = α(yẑ + zŷ)× x̂ + α(xẑ + zx̂)× ŷ + α(xŷ + yx̂)× ẑ

= αx(ẑ× ŷ + ŷ × ẑ) + αy(ẑ× x̂ + x̂× ẑ) + αz(ŷ × x̂ + x̂× ŷ)

= 0 + 0 + 0 = 0. (4)

Thus, we see that the E1 and the E3 fields have zero curls and therefore are allowed as

electrostatic fields, but the E2 field is forbidden.

Problem 1(b):

For the allowed fields E1 and E3 the electric charge densities ρ obtain from the Gauss Law

ρ = ε0∇ · E. Thus,

ρ1 = ε0α

(
∂(2xy + y2)

∂x
+
∂(2xy + y2)

∂y
+
∂(−3z2)

∂z

)
= ε0α

(
2y + 2x − 6z

)
, (5)
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ρ3 = ε0α

(
∂(yz)

∂x
+
∂(xz)

∂y
+
∂(xy)

∂z

)
= ε0α(0 + 0 + 0) = 0. (6)

Finally, it is easy to see that

E1 = α∇
(
xy(x+ y)) − z3

)
, (7)

E3 = α∇(xyz), (8)

which immediately gives us the potentials for the two allowed electrostatic fields:

V1(x, y, z) = α
(
z3 − xy(x+ y)

)
, (9)

V3(x, y, z) = −αxyz. (10)

Problem 2(a):

The induced charges on the grounded outer shell must completely screen all the charges

inside it from the outside world. Hence, its net charge — on that shell and everything inside

it — must vanish; for the problem at hand, this means

Q1 + Q2 + Q3 = 0 =⇒ Q3 = −Q1 − Q2 . (11)

Or in terms of the charges per unit length,

λ3 = −λ1 − λ2 . (12)
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Problem 2(b):

By the Gauss Law for cylindrically symmetric systems,

E(s, φ, z) =
Q[inside s]

2πε0L

ŝ

s
. (13)

Thus, for the 3-shell system at hand,

for 0 ≤ s < R1, E = 0, (14)

for R1 < s < R2, E =
Q1

2πε0L

ŝ

s
, (15)

for R2 < s < R3, E =
Q1 +Q2

2πε0L

ŝ

s
, (16)

for R3 < s <∞, E =
Q1 +Q2 +Q3

2πε0L

ŝ

s

= 0, because Q1 +Q2 +Q3 = 0, cf. part(a). (17)

Problem 2(c):

Using

b∫
a

ds

s
= ln

b

a
(18)

and the electric fields (15) and (16) between the shells, we immediately find the potential

differences

V1 − V2 =

shell2∫
shell1

E · dr =

R2∫
R1

Q1

2πε0L

ds

s
=

Q1

2πε0L
× ln

R2

R1
, (19)

and likewise

V2 − V3 =
Q1 +Q2

2πε0L
× ln

R3

R2
. (20)

Furthermore, the outer shell is grounded, so its potential must be zero,

V3 = 0. (Exam : 4)

3



Consequently, the middle shell’s potential is

V2 = (V2 − V3) + (V3 = 0) =
Q1 +Q2

2πε0L
× ln

R3

R2
, (Exam : 5)

while the inner shell’s potential is

V1 = V2 + (V1 − V2)

=
Q1 +Q2

2πε0L
× ln

R3

R2
+

Q1

2πε0L
× ln

R2

R1

=
Q1

2πε0L
× ln

R3

R1
+

Q2

2πε0L
× ln

R3

R2
.

(Exam : 6)

Problem 2(d):

When the inner shall is grounded, its charge changes from Q1 to some Q′1, while the charge

on the still-grounded outer shell also changes Q3 → Q′3 so as to keep zero net charge of the

3 shells,

Q′1 + Q2 + Q′3 = 0. (21)

Consequently, the potential for the inner shell changes from V3 from eq. (Exam:6) to

V ′1 =
Q′1

2πε0L
× ln

R3

R1
+

Q2

2πε0L
× ln

R3

R2
. (22)

But for the grounded inner shell, this potential must vanish, V ′1 = 0, hence

Q′1
2πε0L

× ln
R3

R1
+

Q2

2πε0L
× ln

R3

R2
= 0. (23)

Solving this equation for the new Q′1 charge of the inner shell, we find

Q′1 = −Q2 ×
ln(R3/R2)

ln(R3/R1)
. (24)

Therefore, the new charge of the outer shell is

Q′3 = −Q′1 − Q2 = Q2 ×
(

ln(R3/R2)

ln(R3/R1)
− 1

)
= −Q2 ×

ln(R2/R1)

ln(R3/R1)
. (25)

Finally, the new potential of the isolated middle shell follows from eq. (Exam:5) for the new
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charges,

V2 =
Q′1 +Q2

2πε0L
× ln

R3

R2

=
Q2

2πε0L
×
(

1 − ln(R3/R2)

ln(R3/R1)

)
× ln

R3

R2

=
Q2

2πε0L
× ln(R2/R1) ln(R3/R2)

ln(R3/R1)
.

(26)

Problem 3(a):

The electric field is (minus) the gradient of the potential (Exam:7), thus

for r < R, E(r) = −V0
R

r̂, (27)

for r > R, E(r) = +
V0R

r2
r̂. (28)

Note that the potential (Exam:7) is continuous but the electric field is discontinuous at

r = R.

Now consider the electric charges and their distribution. Since the potential is finite

everywhere in space, there are no point or line charges. However, discontinuity of the electric

field at the spherical surface r = R implies surface charges on that sphere. Specifically, the

surface charge density is

σ = ε0 disc[Er]@(r = R) = ε0(Er(r = R + 0) − Er(r = R− 0))

= ε0

(
+V0
R
− −V0

R

)
= +

2V0ε

R
.

(29)

As to the volume charge density, it obtains from the Gauss Law ρ = ε0∇ · E, which for a

spherically symmetric electric field becomes

ρ(r) = ε0

(
dEr

dr
+

2Er

r

)
. (30)

For the electric field at hand, this gives us

for r < R, ρ = −2ε0V0
Rr

, (31)
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for r > R, ρ = 0. (32)

Note that despite the 1/r singularity of the volume charge density at the center, the net

electric charge inside the sphere is finite, specifically

Qinside =

R∫
0

ρ(r)× 4πr2 dr = −2ε0V0
R
×

 R∫
0

4πr2 dr

r
= 2πR2

 = −4πε0V0R. (33)

Unlike the example discussed in the review session, this volume charge does not cancel the

surface charge on the sphere

Qsurface = σ × 4πR2 = +8πε0V0R, (34)

and since there are no charges outside the sphere, the net charge is

Qnet = Qinside + Qsphere +
(
Qoutside = 0

)
= +4πε0V0R. (35)

By inspection, this is precisely the net charge responsible for the Coulomb potential V =

(V0R)/r outside the sphere.

Nota bene: In the exam I did not ask you to calculate the net charges, so if you did not it

would not lower your grade.

Problem 3(b):

There are at least 3 methods to calculate the net electrostatic energy, and for the purpose

of this exam the students may use any one of these methods, whichever they like. But in

these solutions, I will work out two most commonly used methods.

Method 1: Given ρ(r) and σ at the boundary sphere calculated in part (a), the energy
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obtains as

U =
1

2

∫
V dQ =

1

2

R∫
0

ρ(r)× V (r)× 4πr2 dr +
1

2
σ × V (R)× 4πR2

=
1

2

R∫
0

(−2ε0V0)

Rr
× V0r

R
× 4πr2 dr +

1

2

(+2ε0V0)

R
× V0 × 4πR2

= −4πε0V
2
0

R2
×

 R∫
0

r2 dr =
R3

3

+ 4πε0V
2
0 R

= +
8π

3
ε0V

2
0 R.

(36)

Method II: Given the electric field everywhere, the energy obtains as

U =
ε0
2

∫∫∫
whole
space

E2 d3Vol =
ε0
2

R∫
0

E2 × 4πr2 dr +
ε0
2

∞∫
R

E2 × 4πr2 dr

=
ε0
2

R∫
0

(
V0
R

)2

4πr2 dr +
ε0
2

∞∫
R

(
V0R

r2

)2

4πr2 dr

= 2πε0V
2
0

 1

R2

R∫
0

r2 dr + R2

∞∫
R

dr

r2


= 2πε0V

2
0

(
1

R2
× R3

3
+ R2 × 1

R
=

4R

3

)
=

8π

3
ε0V

2
0 R.

(37)

Nota bene: Any one of these two methods is sufficient for the exam, I do not expect the

students to do both in the limited time they have.
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Problem 4:

Using the separation of variables method, we start by looking for potentials of the form

V (x, y, z) = f(x)× g(y)× h(z) (38)

which obey the Laplace equation and the V = 0 boundary conditions on the 4 sides and

the bottom of the cubic box, but do not impose any boundary condition at the top. As

explained in class, the f(x), g(y), and h(z) functions obey

f ′′(x) + A1f(x) = 0 and f(0) = f(a) = 0, (39)

g′′(y) + A2g(y) = 0 and g(0) = g(a) = 0, (40)

h′′(z) + A3h(z) = 0 and h(0) = 0, (41)

for some constants A1, A2, A3 which add up to zero,

A1 + A2 + A3 = 0. (42)

The solutions to these equations have form

f(x) = sin
mπx

a
for some integer m, A1 = +

(mπ
a

)2
, (43)

g(y) = sin
nπy

a
for some integer n, A2 = +

(nπ
a

)2
, (44)

h(z) = sinh(κm,nz), (45)

where κm,n =
√
−A3 = A1 + A2 =

π

a

√
m2 + n2 . (46)

Altogether, we have an infinite series (or rather a double series in m and in n) of solutions

of the separated form (38), so the generic solution is

V (x, y, z) =
∑
m,n

Cm,n sin(mπx/a) sin(nπy/a) sinh(κm,nz) (47)

for some constant coefficients Cm,n. The specific values of these coefficients follow from the
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boundary condition at the top side of the cubic box:

V (x, y; z = a) =
∑
m,n

Cm,n sinh(κm,na)× sin(mπx/a) sin(nπy/a) = given Vb(x, y). (48)

In general, this calls for the double Fourier transform of the boundary potential,

Cm,n × sinh(κm,na) =
4

a2

a∫∫
0

dx dy Vb(x, y)× sin(mπx/a) sin(nπy/a). (49)

However, for the problem at hand the boundary potential

Vb(x, y) = V0 sin(3πx/a) sin(4πy/a) (50)

look precisely like a single term (m = 3, n = 4) in the series (48), so there is no need for the

Fourier transform. Instead, we simply let

C3,4 × sinh(κ3,4a) = V0, all other Cm,n = 0. (51)

Moreover, for the cubic box

κ3,4 =
π

a

√
32 + 42 =

π

a
× 5, (52)

so

C3,4 =
V0

sinh(5π)
while all other Cm,n = 0. (53)

Thus altogether,

V (x, y, z) =
V0

sinh(5π)
× sin(3πx/a)× sin(4πy/a)× sinh(5πz/a). (54)
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Problem 4(?):

The surface charge density σ(x, y) on the conducting bottom square of the cubic box obtains

from the electric field immediately above the bottom,

σ(x, y) = ε0Ez(x, y, z → 0) = −ε0
∣∣∣∣∂V∂z

∣∣∣∣
z→+0

. (55)

For the potential (54),

∂V

∂z
=

V0
sinh(5π)

× sin(3πx/a)× sin(4πy/a)× (5π/a) cosh(5πz/a), (56)

where

cosh(5πz/a) → 1 for z → 0. (57)

Consequently,

σ(x, y) = − 5π

sinh(5π)
× ε0V0

a
× sin(3πx/a)× sin(4πy/a) (58)

where

5π

sinh(5π)
≈ 2.37 · 10−6. (59)
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