
PHY–352 K. Solutions for the second midterm exam.

Problem 1:

(a) The ℓ = 0 multipole moment — the net charge — obviously vanishes for the ring plus

point charge system in question. The next multipole moment for ℓ = 1 — the dipole moment

— also happens to vanish. Indeed, the pz component of the dipole moment vanishes because

all charges lie in the XY plane and have z = 0. And at the same time, the axial symmetry

of the system — invariance under rotations around the Z axis — guarantees that the px and

the py components of the dipole moment happen to vanish.

In part (b) we shall see the system has a non-zero quadrupole moment, so that is the

leading ℓ = 2 multipole of the system.

(b–c) For any axially symmetric system, the quadrupole moment tensor has form

Qi,j = Qz,z







−1
2 0 0

0 −1
2

0

0 0 +1






, (1)

and the potential it generates has form

Vquadrupole(r, θ, φ) =

∑

i,j Qi,j r̂ir̂j

4πǫ0 r3
=

Qz,z

4πǫ0

P2(cos θ)

r3
=

Qz,z

4πǫ0

3 cos2 θ − 1

2r3
, (2)

So all we need to calculate is the Qz,z component of the quadrupole moment. In general,

Qz,z =
∑

∫

dQ
(

3
2z

2 − 1
2r

2
)

, (3)

where the sum is over the charged bodies of the system, and the integral for each body is

over its volume, area, or length, depending on the body’s geometry. The system at hand
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comprises 2 bodies — the point charge and the ring, — thus

Qz,z = (−Q)×
(

3
2
z2 − 1

2
r2
)

point
+

∫

ring

(

3
2
z2 − 1

2
r2
)

×
+Q

2π
dφ. (4)

The first term here vanishes since the point charge lies at z = r = 0, while for the ring

(

3
2
z2 − 1

2
r2
)

= −1
2
R2 = const, (5)

hence in the second term

∫

ring

(

3
2z

2 − 1
2r

2
)

×
+Q

2π
dφ = −

R2

2
×

2π
∫

0

+Q

2π
dφ = −

R2

2
× (+Q). (6)

Altogether,

Qz,z = −
QR2

2
, (7)

which generates the leading-multipole potential

V (r, θ, φ) = −
QR2

8πǫ0

3 cos2 θ − 1

2r3
. (8)

Problem 2:

(a) First, in light of the cylindrical symmetry of the system — rotations around the Z

axis and translations along that axis — all 3 vector field E, P, and D must point in the

radial direction ŝ of the cylindrical coordinate system (s, φ, z), while their magnitudes should

depend only on the cylindrical radius s,

E(s, φ, z) = E(s only) ŝ ,

P(s, φ, z) = P (s only) ŝ ,

D(s, φ, z) = D(s only) ŝ .

(9)
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Second, thanks to this symmetry, the magnitude D(s) easily obtains from the Gauss Law:

2πs× L×D(s) = Qnet
free[inside s] =











0 for s < a,

+Q for a < s < b,

0 for s > b.

(10)

Thus, inside the inner tube, — or outside the outer tube, — we have D = 0, and since the

dielectric is linear this also means E = 0 and P = 0. However, we do have non-zero fields

between the two tubes, for a < s < b. Specifically,

D(s) =
Q

2πLs
, (11)

E(s) =
D(s)

ǫ(s)ǫ0
=

Q

2πǫ0 Ls

/

b2

s2
=

Qs

2πǫ0 Lb2
, (12)

P (s) = D(s) − ǫ0E(s) =
Q

2πL

(

1

s
−

s

b2

)

. (13)

(b) The voltage between the tubes obtains by integrating the radial component of the E

field:

V =

b
∫

a

E(s) ds =

b
∫

a

Qs

2πǫ0Lb2
ds =

Q

2πǫ0Lb2

b
∫

a

s ds =
Q

2πǫ0Lb2
×

b2 − a2

2
. (14)

Consequently,

1

C
=

V

Q
=

1

4πǫ0L
×

b2 − a2

b2
(15)

and hence the capacitance

C = 4πǫ0L×
b2

b2 − a2
. (16)

Finally, the net electrostatic energy of this capacitor is

U =
Q2

2C
=

Q2

8πǫ0L
×

b2 − a2

b2
. (17)
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⋆ The bound charge density on the outer surface of the dielectric (at s = b) is

σb(outer) = nouter ·P(s = b) = +ẑ ·P(s = b) = +P (s = b)

=
Q

2πL

(

1

b
−

b

b2

)

= 0.
(18)

The bound charge density on the inner surface of the dielectric (at s = a) is

σb(inner) = ninner ·P(s = a) = −ẑ ·P(s = a) = −P (s = a)

= −
Q

2πL

(

1

a
−

a

b2

)

= −
Q(b2 − a2)

2πLab2
.

(19)

The volume charge density in the bulk of the dielectric is

ρb = −∇ · (P = P (s)̂s) = −

(

dP

ds
+

P

s

)

= −
Q

2πL

(

d

ds

(

1

s
−

s

b2

)

+
1

s

(

1

s
−

s

b2

))

= −
Q

2πL

(

−
1

s2
−

1

b2
+

1

s2
−

1

b2

)

= +
2Q

2πLb2
.

(20)

Finally, let’s calculate the net bound charge

Qnet
b = Qb(outer) + Qb(inner) + Qb(bulk), (21)

where

Qb(outer) = 2πLb× σb(outer) = 2πLb× 0 = 0, (22)

Qb(inner) = 2πLa× σb(inner) = 2πLa×
−Q(b2 − a2)

2πLab2
= −Q

b2 − a2

b2
, (23)
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while

Qb(bulk) =

∫∫∫

ρb d
3Vol =

b
∫

a

ρb(s)× 2πLs ds

=

b
∫

a

2Q

2πLb2
× 2πLs ds =

Q

b2

b
∫

a

2s ds

=
Q

b2
(b2 − a2) .

(24)

Altogether, the net bound charge (21) of the dielectric amounts to

Qnet
b = 0 − Q

b2 − a2

b2
+ Q

b2 − a2

b2
= 0. (25)

Problem 3:

(a) The magnetic force on the second wire stems from the magnetic field of the first wire.

For an infinite straight wire along the z axis, the magnetic field is

B1 =
µ0I1

2π

φ̂

s
, (26)

or in Cartesian coordinates

B1(x, y, z) =
µ0I1

2π

x ŷ − y x̂

x2 + y2
. (27)

The force of this field on an element dℓ of the second wire is

dF = I2 d~ℓ×B1 (28)

where the vector d~ℓ points along the wire’s direction. In light of eq. (E.2) for the wire,

d~ℓ = dℓ (sin θ ŷ + cos θ ẑ), (29)
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hence

dF = I2 d~ℓ×B1

= I2 dℓ (sin θ ŷ + cos θ ẑ)×
µ0I1

2π

x ŷ − y x̂

x2 + y2

=
µ0I1I2

2π(x2 + y2)
dℓ





x sin θ(ŷ × ŷ = 0) + x cos θ(ẑ× ŷ = −x̂)

− y sin θ(ŷ × x̂ = −ẑ) − y cos θ(ẑ× x̂ = +ŷ)



 .

(30)

In this formula, x and y are coordinates of the appropriate point of the second wire. Ac-

cording to eq. (E.2),

x = a 〈〈 fixed) 〉〉, y = sin θ × ℓ, (31)

hence

dF =
µ0I1I2

2π(a2 + ℓ2 sin2 θ)
dℓ

(

−a cos θ x̂ + ℓ sin θ (sin θ ẑ− cos θ ŷ)
)

. (32)

(b) Now let’s integrate the force elements (32) to get the net force on the second wire:

Fnet =

ℓ=+∞
∫

ℓ=−∞

dF =

+∞
∫

−∞

µ0I1I2

2π(a2 + ℓ2 sin2 θ)

(

−a cos θ x̂ + ℓ sin θ(sin θẑ− cos θŷ)
)

dℓ

=
µ0I1I2

2π
(−a cos θ x̂)

+∞
∫

−∞

dℓ

a2 + sin2 θ × ℓ2

+
µ0I1I2

2π
sin θ(sin θẑ− cos θŷ)

+∞
∫

−∞

ℓ dℓ

a2 + sin2 θ × ℓ2

〈〈 using integrals (E.3) 〉〉

=
µ0I1I2

2π
∗ (−a cos θ x̂) ∗

π

a sin θ
+

µ0I1I2

2π
∗ sin θ(sin θẑ− cos θŷ) ∗ 0

=
µ0I1I2

2 tan θ
(−x̂).

(33)

Note: when θ = 0 or θ = 180◦, the force between the two wires become infinite. Indeed,

for θ = 0 or θ = 180◦, the two wires are parallel, so the force per unit length does not

diminish with ℓ → ±∞, hence infinite net force.
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As to the direction of the force (33), it’s −x̂ for θ < 90◦ and +x̂ for θ > 90◦. In both

cases, the force is along the shortest distance between the two wires; it is attractive for

θ < 90◦ and repulsive for θ > 90◦.

Problem 4:

(a) A steady current density must have zero divergence. Let’s verify that for the current

density (E.4):

∇ · J =
∂Jx

∂x
+

∂Jy

∂y
+

∂Jz

∂z
= 0 + 0 + 0 = 0, (34)

where the first two terms vanish because the current does not depend on x or y, and the

third term vanish because the current does not have a z component, Jz = 0. Thus, the

current density (E.4) indeed has zero divergence, which allows it to be steady. (We cannot

prove its steadiness from the eq. (E.4) alone, but at least it can be steady.)

(b) First, the translational symmetries of the current (E.4) in the x and y directions make

the vector potential independent of the x and y coordinates, thus

A(x, y, z) = A(z only). (35)

Second, the current (E.4) is symmetric under 180◦ rotation around the x axis, so on that

axis — and hence for z = 0 but any x and y — the vector potential should point in the x̂

direction,

A(z = 0) = A0x̂ (36)

for some constant A0. Finally, the current (E.4) has helical symmetry — that is, it’s invariant

under simultaneous translations in the z directions and rotations around the z axis,

J(z +∆z) = Rotate[angle = k∆z, axis = ẑ]
(

J(z)
)

. (37)

In particular,

J(z) = Rotate[angle = kz, axis = ẑ]
(

J(0)
)

. (38)
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The vector potential should have a similar symmetry, hence

A(z) = Rotate[angle = kz, axis = ẑ]
(

A(0) = A0x̂
)

= A0

(

cos(kz) x̂ + sin(kz) ŷ
)

. (39)

Quod erat demonstrandum.

(c) In general, the Ampere’s Law for the B field translates to the equation

∇×∇×A = ∇(∇ ·A) − ∇2A = µ0J (40)

for the vector potential A. But the vector potential (E.5) has obviously zero divergence —

for the same reasons the current (E.4) has zero divergence — so eq. (40) becomes the Poisson

equation

∇2A = −µ0J. (41)

Let’s verify this Poisson equation for the current (E.4) and the potential (E.5).

Since the potential (E.5) depends only on the z coordinate, its Laplacian is simply its

second derivative,

∇2A(z) =
d2

dz2
A(z). (42)

Calculating this derivative components we have

∇2Jx =
d2

dz2

(

a cos(kz)
)

= −A0k
2 cos(kz), (43)

∇2Jy =
d2

dz2

(

a sin(kz)
)

= −A0k
2 sin(kz), (44)

∇2Jz = 0, (45)

thus in vector notations

∇2J(z) = −A0k
2
(

cos(kz) x̂ + sin(kz) ŷ
)

. (46)

Comparing this formula to the current density (E.4), we see that indeed

∇2A(z) = −µ0J(z) provided A0k
2 = µ0J0. (47)
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This nails down the overall coefficient A0 of the vector potential (E.5),

A0 =
µ0J0

k2
. (48)

(d) Given the vector potential A(r), the magnetic field obtains as its curl B = ∇×A. For

the potential (E.5) which depends only on the z coordinate, the curl simplifies to

Bx = −
dAy

dz
= −

d
(

A0 sin(kz)
)

dz
= −A0k cos(kz), (49)

By = +
dAx

dz
= +

d
(

A0 cos(kz)
)

dz
= −A0k sin(kz), (50)

Bz = 0, (51)

or in vector notations

B(z) = −A0k
(

cos(kz) x̂ + sin(kz) ŷ
)

= −
µ0J0

k

(

cos(kz) x̂ + sin(kz) ŷ
)

. (52)
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