
Vector Potential for the Magnetic Field

Let me start with two two theorems of Vector Calculus:

Theorem 1: If a vector field has zero curl everywhere in space, then that field is a gradient

of some scalar field.

Theorem 2: If a vector field has zero divergence everywhere in space, then that field is a

curl of some other vector field.

The first theorem allows us to introduce the scalar potential for the static electric field,

∇×E(x, y, z) = 0 ∀x, y, z =⇒ E(x, y, z) = −∇V (x, y, z) for some V (x, y, z), (1)

while the second theorem allows us to introduce the vector potential for the magnetic field,

∇ ·B(x, y, z) = 0 ∀x, y, z =⇒ B(x, y, z) = ∇×A(x, y, z) for some A(x, y, z). (2)

The potentials (1) and (2) have many uses. In particular, they are needed for the Lagrangian

or Hamiltonian description of a charged particle’s motion in classical mechanics,

L(r,v) =
m

2
v2 − qV (r) + qv ·A(r), (3)

H(r,p) =
1

2m

(
p − qA(r)

)2
+ qV (r), (4)

or in quantum mechanics,

Ĥ =
1

2m

(
p̂ − A(r̂)

)2
+ qV (r̂). (5)

I shall explain these issues — as a prelude to explaining the Aharonov–Bohm effect, and the

Dirac monopoles — — in a couple of extra lecture after the second midterm; see also my

notes “claccical and quantum mechanics a charged particle”, and “Aharonov–Bohm effect

and SQUIDs”, and “Electric–Magnetic duality and Dirac monopoles”. But for the current

set of notes, I would like to focus on using the vector potential A(x, y, z) to calculate the

magnetic field.
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Let me start with some general properties of the vector potential. While the electrostatic

field E(r) determines the scalar potential V (r) up to an overall constant term, the magnetic

field B(r) determines the vector potential A(r) only up to a gradient of an arbitrary scalar

field Λ(x, y, z). Indeed, the vector potentials A(x, y, z) and

A′(x, y, z) = A(x, y, z) + ∇Λ(x, y, z) (6)

have the same curl everywhere, so they correspond to the same magnetic field,

B′(x, y, z) = ∇×A′(x, y, z) = ∇×A(x, y, z) + ∇×∇Λ(x, y, z) = B(x, y, z) + 0. (7)

The relations (6) between different vector potentials for the same magnetic field are called

the gauge transforms.

Despite ambiguity of the vector potential itself, some of its properties are gauge invariant,

i.e., the same for all potentials related by gauge transforms. For example, for any closed

loop L, the integral
∮

L

A · d~ℓ (8)

is gauge invariant; indeed,

∮

L

A′(r) · dr −
∮

L

A(r) · dr =

∮

L

∇Λ(r) · dr =

∮

L

dΛ(r) = 0. (9)

Physically, the integral (8) in the magnetic flux through the loop L. Indeed, take any surface

S spanning the loop L; by the Stokes’ theorem,

ΦB[through S] =

∫∫

S

B · d2A =

∫∫

S

(∇×A) · d2A =

∮

L

A · d~ℓ. (10)

We may use eq. (10) to easily find the vector potential for a magnetic field which has

some symmetries. For example, consider the uniform magnetic field B = Bẑ inside a long
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solenoid. By the rotational and translational symmetries of the solenoid, we expect

A(s, φ, z) = A(s)φ̂φφφφφφφφφ, (11)

while the magnitude A(s) follows from eq. (10): Take a circle of radius s < Rsolenoid, then

∮

circle

A · d~ℓ = A(s)× 2πs, (12)

while the magnetic flux through that circle is

ΦB[circle] = B × πs2, (13)

hence

A(s) =
B × πs2

2πs
= 1

2
Bs. (14)

In Cartesian coordinates, the vector potential becomes

A = 1
2
Bsφ̂φφφφφφφφφ = 1

2
B(xŷ − yx̂), (15)

which makes it easy to verify

∇×A = 1
2
B(x̂× ŷ) − 1

2
B(ŷ × x̂) = Bẑ = B. (16)

Eq. (15) gives the vector potential inside the long solenoid. Outside the solenoid, the

magnetic field is negligible, but the flux through a circle of radius s > Rsolenoid is non-zero

due to the flux inside the solenoid. Thus,

ΦB[circle] = B × πR2 (17)

and hence

2πs×A(s) = ΦB = πR2B =⇒ A(s) =
BR2

2s
. (18)
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In vector notations,

A =
BR2

2

φ̂φφφφφφφφφ

s
=

BR2

2

xŷ − yx̂

x2 + y2
=

BR2

2
∇φ, (19)

which agrees with the zero magnetic field outside the solenoid,

B = ∇×A =
BR2

2
∇×∇φ = 0. (20)

Equations for the Vector Potential

A static magnetic field of steady currents obeys equations

∇ ·B = 0, (21)

∇×B = µ0J. (22)

In terms of the vector potential A(x, y, z), the zero-divergence equation (21) is automatic:

any B = ∇×A has zero divergence. On the other hand, the Ampere Law (22) becomes a

second-order differential equation

µ0J = ∇× (∇×A) = ∇(∇ ·A) − ∇2A. (23)

Moreover, for any solution A(x, y, z) of this equation for any given current density J(x, y, z),

there is a whole family of other solutions related to each other by the gauge transforms

A′(x, y, z) = A(x, y, z) + ∇Λ(x, y, z), any Λ(x, y, z). (6)

To avoid this redundancy, it is often convenient to impose an extra gauge-fixing condition

on the vector potential besides ∇ × A = B. In magnetostatics, the most commonly used
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condition is the transverse gauge ∇ ·A = 0. Note that any vector potential can be gauge-

transformed to a potential which obeys the transversality condition. Indeed, suppose∇·A0 6=
0, then for

Λ(r) =
1

4π

∫∫∫
(∇ ·A0)(r

′)

|r− r′| d3Vol
′

(24)

we have

∇2Λ(r) = −∇ ·A0(r) (25)

and therefore A = A0 +∇Λ — which is gauge-equivalent to the A0 — has zero divergence,

∇ ·A = ∇ ·A0 + ∇2Λ = 0. (26)

In the transverse gauge, ∇ × B becomes simply the (minus) Laplacian of the vector

potential,

∇×B = ∇× (∇×A) = ∇(∇ ·A) − ∇2A −→ −∇2A, (27)

so the Ampere Law equation (23) becomes the Poisson equation for the vector potential,

∇2A(x, y, z) = −µ0 J(x, y, z). (28)

Component by component, it looks exactly like the Poisson equation for the scalar potential

of the electrostatics,

∇2V (x, y, z) = ǫ−1
0 ρ(x, y, z), (29)

so its solution has a similar Coulomb-like form

A(r) =
µ0
4π

∫∫∫
J(r′)

|r− r′| dx
′ dy′ dz′. (30)

As written, this formula is for the volume current J(x, y, z); for a surface current K, it
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becomes

A(r) =
µ0
4π

∫∫

surface

K(r′)

|r− r′| d
2A, (31)

while for a current in a thin wire we have

A(r) =
µ0
4π

∫

wire

I dr′

|r− r′| . (32)

These Coulomb-like equations for the vector potential lead to the appropriate Biot–

Savart–Laplace equations for the magnetic field B(x, y, z) by simply taking the curl of both

sides. For example, for the volume current J(r′),

B(r) = ∇×A[from eq. (30)] = ∇×
(
µ0
4π

∫∫∫
J(r′)

|r− r′| d
3Vol

′

)

=
µ0
4π

∫∫∫
∇r ×

(
J(r′)

|r− r′|

)
d3Vol

′
=

µ0
4π

∫∫∫ (
∇r

1

|r− r′|

)
× J(r′) d3Vol

′

=
µ0
4π

∫∫∫ −(r− r′)

|r− r′|3 × J(r′) d3Vol
′
=

µ0
4π

∫∫∫
J(r′)× r− r′

|r− r′|3 d
3Vol

′
.

(33)

However, for practical calculations of the magnetic field, it is often easier to first evaluate

the Coulomb-like integrals (30)–(32) for the vector potential and then take its curl, instead

of directly evaluating the appropriate Biot–Savart–Laplace integral.

Example: Rotating Charged Sphere

Consider a uniformly charged spherical shell of radius R and charge density σ. Let’s

make this sphere spin around its axis with angular velocity ωωωωωωωωωω . Consequently, a point P

on this sphere with radius-vector r′ (counted from the sphere’s center) moves with linear

velocity v = ωωωωωωωωωω × r′, which makes for the surface current density

K(r′) = σv = σ ωωωωωωωωωω × r′. (34)

Let’s find the magnetic field of this current, both inside and outside the sphere.
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Instead of using the Biot–Savart–Laplace equation, let’s start by calculating the vector

potential from eq. (31):

A(r) =
µ0
4π

∫∫

sphere

K(r′) = σωωωωωωωωωω × r′

|r− r′| d2A′ =
µ0σ

4π
ωωωωωωωωωω ×

∫∫

sphere

r′

|r− r′| d
2A′. (35)

Note: I use vector notations for the angular velocity ωωωωωωωωωω instead of the spherical coordinates

based on the spin axis because evaluating the integral on the RHS of eq. (35) is easier in

a different system of spherical coordinates. Indeed, once I pull the ωωωωωωωωωω× factor outside the

integral, the remaining integral
∫∫

sphere

r′

|r− r′| d
2A′ (36)

depends only on the r and on the sphere’s radius R, hence by spherical symmetry the vector

obtaining from the integral (35) must point in the direction of r — from the center of the

sphere towards the point where we evaluate the vector potential. Consequently,

A(r) =
µ0σ

4π
(ωωωωωωωωωω × r̂) I (37)

where I is the magnitude of the integral in eq. (35), or equivalently its projection on the r̂

axis, thus

I =

∫∫

sphere

r′ · r̂
|r− r′| d

2A′. (38)

To take this integral, let’s use the spherical coordinates where the “north pole” θ′ = 0 points

in the direction of r so that the θ′ coordinate of some point r′ on the sphere is the angle

between the vectors r′ and r. Consequently,

r′ · r̂ = R cos θ′, |r− r′|2 = r2 + r′2 − 2r′ · r = r2 + R2 − 2Rr cos θ′, (39)

and hence

I =

∫∫

sphere

R cos θ′√
r2 +R2 − 2Rr cos θ′

×R2 sin θ′ dθ′ dφ′. (40)

The integral over dφ′ here is trivial and yields 2π, while in the integral over dθ′ it’s convenient
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to change the integration variable to c = cos θ′. Thus

I = 2πR3

π∫

0

cos θ′ sin θ′ dθ′√
r2 +R2 − 2Rr cos θ′

= 2πR3

+1∫

−1

c dc√
r2 +R2 − 2Rrc

. (41)

To evaluate the remaining integral, we expand the denominator into Legendre polynomials

in c,

1√
r2 +R2 − 2Rrc

=





∑

ℓ

Rℓ

rℓ+1
× Pℓ(c) for r > R (measuring A outside the sphere),

∑

ℓ

rℓ

Rℓ+1
× Pℓ(c) for r < R (measuring A inside the sphere),

(42)

then note that in the numerator c = P1(c) and therefore

+1∫

−1

Pℓ(c)× c dc =
2

2ℓ+ 1
× δℓ,1 =

{
2
3

for ℓ = 1

0 for any other ℓ.
(43)

Consequently,

I = 2πR3 × 2

3
×





R

r2
outside the sphere,

r

R2
inside the sphere,

(44)

and plugging this result into eq. (37), we finally arrive at the vector potential:

Outside the sphere, A =
µ0σR

4

3

ωωωωωωωωωω × r̂

r2
, (45)

Inside the sphere, A =
µ0σR

3
r(ωωωωωωωωωω × r̂). (46)

Now that we finally got the vector potential, the magnetic field obtains by taking its
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curl. By the double vector product formula, the curl of the r-dependent factor in eq. (46) is

∇× (rωωωωωωωωωω × r̂) = ∇× (ωωωωωωωωωω × r) = ωωωωωωωωωω(∇ · r) − (ωωωωωωωωωω · ∇)r = ωωωωωωωωωω(3) − ωωωωωωωωωω = 2ωωωωωωωωωω , (47)

hence inside the sphere,

B = ∇×
(
A =

µ0σR

3
r(ωωωωωωωωωω × r̂)

)
=

2µ0σR

3
ωωωωωωωωωω. (48)

Note uniformity of this magnetic field!

On the other hand, the B field outside the sphere is not uniform. Indeed, the curl of the

r-dependent factor in eq. (45) obtains from eq. (47) via the Leibniz rule as

∇×
(
ωωωωωωωωωω × r̂

r2

)
= ∇×

(
ωωωωωωωωωω × r

r3

)
=

(
∇ 1

r3

)
× (ωωωωωωωωωω × r) +

1

r3
∇× (ωωωωωωωωωω × r)

=
−3r̂

r4
× (ωωωωωωωωωω × r) +

1

r3
(2ωωωωωωωωωω) =

1

r3

(
2ωωωωωωωωωω − 3r̂× (ωωωωωωωωωω × r̂)

)
(49)

where

r̂× (ωωωωωωωωωω × r̂) = ωωωωωωωωωω(r̂ · r̂) − r̂(ωωωωωωωωωω · r̂) = ωωωωωωωωωω − r̂(ωωωωωωωωωω · r̂), (50)

2ωωωωωωωωωω − 3r̂× (ωωωωωωωωωω × r̂) = 3r̂(r̂ · ωωωωωωωωωω) − ωωωωωωωωωω, (51)

so altogether

∇×
(
ωωωωωωωωωω × r̂

r2

)
=

1

r3
(
3r̂(r̂ · ωωωωωωωωωω) − ωωωωωωωωωω

)
. (52)

Consequently, the magnetic field outside the rotating sphere is

B = ∇×
(
A =

µ0σR

3

(
ωωωωωωωωωω × r̂

r2

))
=

µ0σR
4

3r3
(
3r̂(r̂ · ωωωωωωωωωω) − ωωωωωωωωωω

)
. (53)

Curiously, this looks like the field of a pure magnetic dipole with dipole moment

m =
4π

3
R4σωωωωωωωωωω =

QnetR
2

2
ωωωωωωωωωω. (54)

I shall explain the magnetic dipoles, quadrupoles, etc., later in these notes.
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Example: Flat Current Sheet

For our next example, consider a flat current sheet in the xy plane with uniform current

density K in the ŷ direction. In terms of the 3D current density,

J(x, y, z) = Kδ(z) ŷ. (55)

Consequently, the Poisson equation for the vector potential of the current sheet is

∇2A = −µ0Kδ(z)ŷ. (56)

Thanks to the symmetries of this equation, we may look for a solution of the form

A(x, y, z) = A(z only) ŷ (57)

where A(z) obey the 1D Poisson equation

d2A

dz2
= −µ0Kδ(z). (58)

Despite the delta function on the RHS, the solution of this differential equation is continuous

at z = 0, namely

A(z) = −1
2
µ0K × |z| , (59)⋆

although its derivative has a discontinuity,

disc

(
dA

dz

)
= −µ0K. (60)

⋆ A general solution of eq. (58) is A(z) = − 1

2
µ0K × |z| + αz + β for arbitrary constants α and β, but

the upside-down symmetry z → −z of the current sheet requires α = 0, while β is physically irrelevant.
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This is general behavior of the vector potential for all kinds of 2D current sheets, flat or

curved, with uniform or non-uniform 2D currents: The vector potential is continuous across

the current sheet, but its normal derivative has a discontinuity,

disc

(
∂A

∂xnormal

)
= −µ0K. (61)

Consequently, the magnetic field has a discontinuity

disc(B) = µ0K× n (62)

where n is the unit vector ⊥ to the current sheet.

Multipole Expansion for the Vector Potential

Suppose an electric current I flows through a closed wire loop of some complicated shape,

and we want to find its magnetic field far away from the wire. Let’s work through the vector

potential according to the Coulomb-like formula

A(r) =
µ0
4π

∮

wire

I dr′

|r− r′| . (63)

Far away from the wire, we may expand the denominator here into a power series in (r′/r),

thus

1

|r− r′| =

∞∑

ℓ=0

r′ℓ

rℓ+1
× Pℓ(cosα) (64)

where α is the angle between the vectors r and r′,

cosα = r̂ · r̂′. (65)

Plugging the expansion (64) into eq. (63) for the vector potential, we obtain

A(r) =
µ0I

4π

∞∑

ℓ=0

1

rℓ+1

∮

wire

r′ℓPℓ(r̂ · r̂′) dr′ (66)

— the expansion of the vector potential into magnetic multipole terms. Let me write down
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the explicit formulae for the three leading terms,

A(r) =
µ0I

4π




1

r

∮
dr′ 〈〈monopole 〉〉

+
1

r2

∮
(r̂ · r′) dr′ 〈〈 dipole 〉〉

+
1

r3

∮
(3
2
(r̂ · r′)2 − 1

2
r′2) dr′ 〈〈 quadrupole 〉〉

+ · · · 〈〈 higher multipoles 〉〉




. (67)

Naively, the leading term in this expansion is the monopole term for ℓ = 0 (the top line in

eq. (67)), but it vanishes for any closed current loop,

∮
dr′ = 0 (68)

Thus, the magnetic multipole expansion starts with the dipole term — which dominates the

magnetic field at large distances from the wire loop. (Except when the dipole moment

happens to vanish.)

Let’s simplify the dipole term in (67) using a bit of vector calculus, Let c be some

constant vector. Then

c ·
∮

(r̂ · r′) dr′ =

∮
(r̂ · r′) c · dr′

〈〈 by Stokes’ theorem 〉〉

=

∫∫ (
∇r′ ×

(
(r̂ · r′) c

))
· d2A

(69)

where

∇r′ ×
(
(r̂ · r′) c

)
=

(
∇r′(r̂ · r′)

)
× c = r̂× c. (70)

Consequently,

c ·
∮
(r̂ · r′) dr′ =

∫∫
(r̂× c) · d2A = (r̂× c) ·

∮
d2A

= (r̂× c) · a 〈〈where a is the vector area of the loop 〉〉

= (a× r̂) · c.

(71)
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Moreover, this equality holds true forany constant vector c, which requires

∮
(r̂ · r′) dr′ = a× r̂. (72)

Finally, plugging this integral into the dipole term in the expansion (67), we arrive at

Adipole(r) =
µ0
4π

Ia× r̂

r2
=

µ0
4π

m× r̂

r2
(73)

where m = Ia is the magnetic dipole moment of the current loop.

I am going to skip over the higher multipoles in these notes. Instead, let me consider

replacing a single wire loop with a circuit of several connected wires. In this case, we may

use the Kirchhoff Law of Currents to express the whole circuit as several overlapping loops

with independent currents; if a wire belongs to several loops, the current in that wire is the

algebraic sum of the appropriate loop currents. For example,

I1 I2 I3

I1 + I2 + I3 = 0

= I1 I3

(74)

By the superposition principle, the vector potential of the whole circuit is the sum of vector

potentials of the individual loops, and as long as the whole circuit occupies small volume

of size ≪ r, we may expand each loop’s A into multipoles, exactly as we did it for a single

loop. In general, the leading contribution is the net dipole term,

Adipole(r) =

loops∑

i

µ0
4π

mi × r̂

r2
=

µ0
4π

mnet × r̂

r2
(75)

where

mnet =

loops∑

i

mi =

loops∑

i

Ii ai (76)

is the net dipole moment of the whole circuit.
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We may also write the net dipole moment of a circuit as a sum over individual wires

rather than over Kirchhoff loops. Indeed, for each closed loop, its vector area obtains as

ai =
1

2

∮

loop#i

r′ × dr′ =
1

2

wires∑

α∈loop#i

∫

wire#α

r′ × dr′ . (77)

Consequently, the net magnetic dipole moment of the circuit is

mnet =

loops∑

i

Iloop#i

2

wires∑

α∈loop#i

∫

wire#α

r′ × dr′

=
1

2

wires∑

α




loops∑

i∋wire#α

Iloop#i




∫

wire#α

r′ × dr′

=
1

2

wires∑

α

Iwire#α

∫

wire#α

r′ × dr′.

(78)

In practice, for circuits made of several thin wires eq. (76) is usually much easier to use

than eq. (78). On the other hand, eq. (78) can be straightforwardly generalized to volume

currents in thick conductors. Indeed, treating a thick conductor as a big bunch of thin wires,

each carrying its own current stream, we have

∫∫∫

conductor

J(r′) d3Vol
′ −→

∑

α

Iα

∫

wire#α

dr′, (79)

and likewise
∫∫∫

conductor

r′ × J(r′) d3Vol
′ −→

∑

α

Iα

∫

wire#α

r′ × dr′. (80)

Comparing the RHS here to eq. (78) for the magnetic dipole moment, we immediately arrive

at

m[thick conductor] =
1

2

∫∫∫

conductor

r′ × J(r′) d3Vol
′
. (81)
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The above argument is rather heuristic, so in a perfect world, I would now give you a

more formal derivation of the magnetic multipole expansion — and in particular of eq. (81)

for the magnetic dipole moment — for the volume currents in thick conductors. But as we

have too little time left in this semester, let me put this derivation into the appendix at the

end of these notes as optional reading material for the interested students.

Instead, let me conclude this section with the explicit formula for the dipole term in the

magnetic field B:

Bdipole(r) = ∇×Adipole(r) =
µ0
4π

3(m · r̂)r̂ − m

r3
, (82)

where the algebra of taking the curl is exactly as in eq. (52) earlier in these notes. In spherical

coordinates centered at the dipole and aligned with the dipole moment,

A =
µ0m

4π

sin θ

r2
φ̂φφφφφφφφφ, (83)

B =
µ0m

4π

2 cos θ r̂ + sin θθ̂θθθθθθθθθ

r3
. (84)

Force and Torque on a Magnetic Dipole

The B field (82) of a magnetic dipole looks exactly like the E field of an electric dipole:

Bdipole =
µ0
4π

3(m · r̂)r̂ − m

r3
, Edipole =

1

4πǫ0

3(p · r̂)r̂ − p

r3
. (85)

Likewise, the force and the torque on a pure magnetic dipole in an external magnetic field

have exactly similar form to the force and the torque on an electric dipole in an external

electric field (see my notes on electric dipoles for details). In particular, in a uniform external

B field, there is no net force on a dipole but there is a net torque,

Fnet = 0, ττττττττττ net = m×B. (86)

In fact, in a uniform B field these formulae are exact for any closed current loop rather than
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just a pure dipole. For the net force, this is trivial,

Fnet =

∮
Id~ℓ×B = I

(∮
d~ℓ = 0

)
×B = 0. (87)

For the net torque, we need some algebra first:

d
(
r× (r×B)

)
= dr× (r×B) + r× (dr×B), (88)

B× (dr× r) = −dr × (r×B) − r× (B× dr) 〈〈 by the Jacobi identity 〉〉

= −dr × (r×B) + r× (dr×B), (89)

hence r× (dr×B) = 1
2
d
(
r× (r×B)

)
+ 1

2
B× (dr× r). (90)

Consequently,

ττττττττττ net =

∫
r× dF =

∮
r× (I dr×B)

〈〈 in light of eq. (90) 〉〉

=
I

2

∮
d
(
r× (r×B)

)
+

I

2

∮
B× (dr× r)

〈〈where the first
∮
of a total differential is zero 〉〉

= 0 + B× I

2

∮
dr× r

=

(
I

2

∮
r× dr

)
×B,

(91)

where the expression inside (· · ·) on the last line is precisely the magnetic dipole moment

m = Ia =
I

2

∮
r× dr (92)

of the current loop. Thus, the net torque on the loop is indeed

~τnet = m×B. (93)
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When the external magnetic field is non-uniform the net force on a current loop does

not vanish. For a small loop, the net force is related to the magnetic moment as

Fnet = ∇(m ·B) (94)

where the gradient acts only on the components of B and not on the m. Let me skip the

proof of this formula and simply say that it is completely similar to the force on an electric

dipole in a non-uniform electric field,

Fnet = (p · ∇)E = ∇(p · E). (95)

(Note that ∇(p · E)− (p · ∇)E = p× (∇×E) = 0 since ∇× E = 0.)

For atoms and molecules, the magnetic dipole moment is fixed by the quantum effects.

Consequently, the magnetic force (94) on an atom or a molecules acts as a potential force,

with a potential energy

U(x, y, z) = −m ·B(x, y, z). (96)

The same potential energy — or rather its variation when the magnetic moment m changes

its direction — is also responsible for the magnetic torque ττττττττττ = m×B.

Appendix: Multipole Expansion for the Volume Currents.

In this Appendix I redo the multipole expansion of the vector potential due to some

compact circuit, but this time I assume volume currents in thick conductors rather than line

currents in thin wires, so before the expansion we have

A(r) =
µ0
4π

∫∫∫
J(r)

|r− r′| d
3Vol

′
. (97)

As before, let’s assume that all the conductors are within some compact volume, and let’s

focus on the vector potential at distances |r| ≫ conductor size. Consequently, we expand
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the inverse distance 1/|r− r′| into a power series in |r′|/|r|, which gives us

A(r) =
µ0
4π

∞∑

ℓ=0

1

rℓ+1

∫∫∫
r′ℓPℓ(r̂ · r̂′)J(r′) d3Vol

′
, (98)

or in a more explicit form

A(r) =
µ0I

4π




1

r

∫∫∫
J(r′) d3Vol

′ 〈〈monopole 〉〉

+
1

r2

∫∫∫
(r̂ · r′)J(r′) d3Vol′ 〈〈 dipole 〉〉

+
1

r3

∫∫∫
(3
2
(r̂ · r′)2 − 1

2
r′2)J(r′) d3Vol

′ 〈〈 quadrupole 〉〉

+ · · · 〈〈 higher multipoles 〉〉




. (99)

The monopole term here vanishes just as it did for the wire loop, albeit in a less obvious

way. To see how this works, pick a constant vector c and take the divergence

∇r′ ·
(
(c · r′)J(r′)

)
= c · J + (c · r) (∇ · J), (100)

where the second term on the RHS vanishes for a steady — and hence divergence-less —

current. Consequently,

c ·
∫∫∫

V

J(r′)d3Vol
′
=

∫∫∫

V

(c · J(r′)) d3Vol′

〈〈 by eq. (100) 〉〉

=

∫∫∫

V

∇r′ ·
(
(c · r′)J(r′)

)
d3Vol

′

〈〈 by Gauss theorem 〉〉

=

∫∫

S

(
(c · r′)J(r′)

)
· d2A

′

(101)

where S is the surface of the volume V. That volume must include the whole conductor,

but we may also make it a bit bigger, which would put the surface S outside the conductor.
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But then there would be no current along or across S, so the integral on the bottom line

of (101) must vanish. Consequently, the top line of eq. (101) must vanish too, and since c is

an arbitrary constant vector, this means zero monopole moment,

∫∫∫

V

J(r′)d3Vol
′
= 0. (102)

Next, consider the dipole term in (99) and try to rewrite it in the form (73) for some

dipole moment vector m. This time, the algebra is a bit more complicated. For an arbitrary

but constant vector c, we have

c ·
(
r̂× (J× r′)

)
= (c · J) (r̂ · r′) − (c · r′) (r̂ · J), (103)

∇r′

(
(c · r′) (r̂ · r′)J(r′)

)
= (c · J) (r̂ · r′) + (c · r′) (r̂ · J) + (c · r′) (r̂ · r′) (∇ · J), (104)

〈〈where the last term vanishes for a steady current. 〉〉

〈〈which has ∇ · J = 0 〉〉

and hence

(c · J) (r̂ · r′) = 1
2
c ·

(
r̂× (J× r′)

)
+ 1

2
∇r′

(
(c · r′) (r̂ · r′)J(r′)

)
. (105)

Consequently, dotting c with the dipole integral, we obtain

c ·
∫∫∫

V

(r̂ · r′)J(r′) d3Vol′ =

∫∫∫

V

(c · J) (r̂ · r′) d3Vol′

=
1

2

∫∫∫

V

(
c ·

(
r̂× (J× r′)

))
d3Vol

′

+
1

2

∫∫∫

V

(
∇r′

(
(c · r′) (r̂ · r′)J(r′)

))
d3Vol

′

=
1

2
c ·


r̂×

∫∫∫

V

(J(r′)× r′) d3Vol
′




+
1

2

∫∫

S

(c · r′) (r̂ · r′)J(r′) · d2A
′

(106)

Similar to what we did for the monopole term, let’s take the integration volume V a bit

larger that the whole conductor, so its surface S is completely outside the conductor. Then
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on the last line of eq. (106) the current J vanishes everywhere on the surface, which kills the

surface integral. This leaves us with

c ·
∫∫∫

conductor+

(r̂ · r′)J(r′) d3Vol′ =
1

2
c ·


r̂×

∫∫∫

conductor+

(J(r′)× r′) d3Vol
′


 , (107)

which must hold for any constant vector c, hence

∫∫∫

conductor+

(r̂ · r′)J(r′) d3Vol′ =
r̂

2
×

∫∫∫

conductor+

J(r′)× r′ d3Vol
′

=


1

2

∫∫∫

conductor+

r′ × J(r′) d3Vol
′


× r̂.

(108)

Also, on both sides of this formula the integration volume may be restricted to just the

conductor, there is no need to integrate over a larger volume here, thus

∫∫∫

conductor

(r̂ · r′)J(r′) d3Vol′ =


1

2

∫∫∫

conductor+

r′ × J(r′) d3Vol
′


× r̂. (109)

Plugging this formula into the dipole term in the vector potential (99), we arrive at

Adipole(r) =
µ0
4πr2

∫∫∫

conductor

(r̂ · r′)J(r′) d3Vol′ =
µ0
4π

m× r̂

r2
(110)

— exactly as in eq. (73) for dipole term of the current loop — for the magnetic dipole moment

m =
1

2

∫∫∫

conductor

r′ × J(r′) d3Vol
′
. (81)
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