
ELECTRIC MAGNETIC DUALITY

Consider the EM fields (or any other kind of U(1) gauge fields) coupled to both electric

and magnetic charges and currents. The classical Maxwell equations

∂µF
µν = Jν

electric ,

∂µF̃
µν = Jν

magnetic ,

where F̃ µν def
= 1

2ǫ
µνρσFρσ ,

(1)

— or in 3D terms

∇ ·E = J0
el ,

∇×E = −
∂B

∂t
− Jmag ,

∇ ·B = J0
mag ,

∇×B = +
∂E

∂t
+ Jel ,

(2)

— allow us to swap the electric and the magnetic fields and currents with each other,

F ′
µν = F̃µν ⇐⇒ E′ = +B, B′ = −E,

and also J ′µ
el = +Jµ

mag , J ′µ
mag = −Jµ

el . (3)

Note however, that this electric-magnetic duality is a symmetry of the Maxwell equations but

not of the classical Lagrangian, let alone of the quantum field theory. Indeed, even for the free

theory with Jµ
el = Jµ

mag = 0, the original theory has L = −1
4FµνF

µν for Fµν
def
= ∂µAν−∂νAµ,

while the dual theory has

L̃ = −1
4 F̃µνF̃

µν = +1
4FµνF

µν for F̃µν
def
= ∂µÃν − ∂νÃµ . (4)

Consequently, the Bianchi identity of one theory becomes the equation of motion of the other

theory and vice verse. And as quantum field theories, the original and the dual theories exist

in different Hilbert spaces, involve different operators not related by any symmetries, etc.;

however, the two theories are physically equivalent to each other.
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For the non-free EM theories — i.e., in presence of electric and magnetic charges and

currents, — the dual theory also has a different coupling constant

α′ =
1

α
. (5)

Indeed, the electric and the magnetic charges of a quantum theory are quantized in different

units,

Qel = n× e, Mmag = m×
4π

e
, 2n,m ∈ Z, (6)

so the electric Coulomb potential is

V (r) =
Q1Q2

4πr
=

n1n2e
2

4πr
=

α

r
× n1n2 , (7)

while the magnetic Coulomb potential is

V (r) =
M1M2

4πr
=

m1m2(4π/e)
2

4πr
=

1/α

r
×m1m2 . (8)

The EM duality swaps the electric and the magnetic charges, but to preserve the charge

quantization it should act as

n′ = m, m′ = −n (9)

rather than

Q′ = M, M ′ = −Q, (10)

which amounts to a charge rescaling. At the same time, to preserve the Coulomb potential,

this charge rescaling must be compensated by changing the QED coupling constant according

to

α′ =
1

α
. (5)

Thus, the electric-magnetic duality relates a weakly coupled theory with α ≪ 1 to a strongly

coupled theory with α′ ≫ 1 or vice verse.
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In particular, in the weakly coupled theory like real-life QED, the electrically charged

particles may appear elementary, like the real-life electrons. On the other hand, the magnet-

ically charged particles arise as large semiclassical configurations of heavy fields. By large,

I mean the configuration’s geometric size R is much larger than its Compton wavelength

1/M , thus RM ≫ 1. Indeed, the ’t Hooft–Polyakov ‘hedgehog’ monopole arising from the

SU(2) Higgsed down to U(1) has geometric size R ∼ 1/MW and mass M ∼ Mw/α, thus

RM ∼ (1/α) ≫ 1.

But in the strongly coupled regime of α ≫ 1, the electrons no longer look elementary;

instead, they are surrounded with dense clouds of virtual photons, e+e− pairs, etc., so they

look like big fat composite objects with MR ≫ 1. On the other hand the monopoles shrink

in size (compared to their Compton wavelengths), and with luck may become approximately

pointlike.

And of course, the best way to investigate the strongly coupled QED-like theory is

to look at its EM-dual theory with a perturbatively dual coupling α′ ≪ 1. In this dual

theory, the electric charges — which are dual to the original magnetic charges — may indeed

be approximately pointlike particles, while the magnetic charges — which are dual to the

original electric charges — become big fat semiclassical configs of some heavy fields.

Thanks to the electric-magnetic duality, we understand both the weakly-coupled and

the strongly-coupled regimes of QED-like abelian gauge theories. Unfortunately, the duality

does not help with the mid-coupling regime of α ∼ 1, because in this regime both the original

and the dual theories are too strongly coupled for the perturbation theory. Also, for α ∼ 1

neither electric nor magnetic charges look approximately point-like, so we may not treat

them as elementary fields of some perturbative QFT.

Effect of the Theta Angle

In the QED-like theories without any magnetic charges,

FµνF̃
µν = −4E ·B = 2∂µ

(
AνF̃

µν
)

(11)

is a total spacetime derivative, hence adding such term to the Lagrangian has no effect,

perturbatively or even non-perturbatively. But in a theory which does have magnetic charges
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we have

∂µF̃
µν = Jν

mag 6= 0 =⇒ FµνF̃
µν 6= ∂µ(anything), (12)

so the Θ term in the Lagrangian does have a non-trivial effect, even classically. Specifically,

Θ changes the electric charges of the magnetic monopoles or dyons.

To see how this works, let’s write the EM Lagrangian in terms of the U(1)-normalized

gauge fields and currents,

Aµ(x) = eAµ(x), Fµν(x) = eF µν(x), Jµ[electron] = −ΨγµΨ 〈〈without e factor 〉〉,

(13)

thus

L =
−1

4e2
FµνF

µν +
Θ

32π2
FµνF̃

µν − JµA
µ, (14)

or in 3D terms

L =
1

2e2
(
~E2 − ~B2

)
−

Θ

8π2
~E · ~B − J0A0 + J · ~A. (15)

For future convenience, let’s define

~C
def
= 4π

∂L

∂~E
=

1

α
~E −

Θ

2π
~B. (16)

Then the Gauss Law obtains from the Lagrangian (15) as the time-independent equation

∂L

∂A0
− ∇ ·

∂L

∂(∇A0)
= 0, (17)

hence

∇ · ~C = 4πJ0. (18)

Now consider a point particle with electric charge Q = n × e and magnetic charge
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M = m× (4π/e). In terms of the U(1)-normalized fields and charges, Q = n× e means

J0(x) = nδ(3)(x) 〈〈without the e factor 〉〉, (19)

hence by the Gauss Law

∇ · ~C(x) = 4πnδ(3)(x). (20)

At the same time, the magnetic point charge M means

∇ · ~B(x) = e∇ ·B(x) = eMδ(3)(x) = 4πmδ(3)(x), (21)

hence by eq. (16)

∇ · ~E = ∇ ·

(
α~C +

αΘ

2π
~B

)
= 4πα

(
n +

Θ

2π
m

)
δ(3)(x). (22)

Or in terms of the canonically normalized electric field E = (1/e)~E ,

∇ · E = e

(
n +

Θ

2π
m

)
δ(3)(x). (23)

In other words, the point particle in question has apparent electric charge

Q = e×

(
n +

Θ

2π
×m

)
. (24)

Thus, for generic values of the Θ angle, the apparent electric charges of the magnetic

monopoles or dyons are irrational in units of e! Only for Θ ≡ 0 (mod 2π) do the elec-

tric charges become integer (in units of e) for all the magnetically charged particles.

But despite the non-integer electric charges (24) of the magnetic monopoles or dyons,

they are consistent with the Dirac’s charge quantization condition: for any two particles
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with integer m1 and m2 and integer or half-integer n1 and n2, their electric and magnetic

charges obey

Q1 ×M2 − Q2 ×M1 = e

(
n1 +

Θ

2π
m1

)
×

4πm2

e
− e

(
n2 +

Θ

2π
m2

)
×

4πm1

e

= 4π
(
n1 ×m2 − n2 ×m1

)
〈〈 regardless of Θ 〉〉

= 2π × an integer.

(25)

Now consider the 2D space of electric and magnetic charges of all the particles — massless

or massive, elementary or composite, stable or unstable, whatever. The charge quantization

makes this space a 2D periodic lattice: a rectangular lattice for Θ ≡ 0 (mod 2π):

Q

M

but a tilted lattice for Θ 6≡ 0 (mod 2π):

Q

M

The 2D plane spanned by the (Q,M) can be thought as a complex plane spanned by

6



the complex charges

Z
def
= Q + iM

= e×

(
n +

Θ

2π
m

)
+

4πi

e
×m = n× e + m× e×

(
θ

2π
+

4πi

e2

)

= e×
(
n + m× τ

)
(26)

for

τ =
Θ

2π
+

4πi

e2
. (27)

Note: in a supersymmetric theory, this τ is precisely the holomorphic gauge coupling of the

U(1) gauge theory!

The complex charges Z = e(n+mτ) are convenient for the complex components of the

Fµν tensor with definite (jL, jR) Lorentz quantum numbers:

jL = 1, jR = 0 : Fαβ ∝ E + iB =
Zn

4πr2
,

JL = 0, JR = 1 : F
α̇β̇

∝ E − iB =
Z∗n

4πr2
.

(28)

Canonical Quantization and the Group of EM Dualities

Let’s start with the free EM fields — without electric or magnetic currents — but with

the Θ angle,

Lfree =
1

2e2
(
~E2 − ~B2

)
−

Θ

8π2
~E · ~B. (29)

Classically, treating ~A(x) as independent dynamical variables, we get the canonically conju-

gate variables

∂L

∂(∂0 ~A)
= −

∂L

∂~E
=

−1

4π

(
~C =

1

α
~E −

Θ

2π
~B

)
. (30)

This gives us the classical Poisson brackets of the ~C and ~B fields,

[
Ci(x),Bj(y)

]
P

= 4πiǫijk
∂

∂xk
δ(3)(x− y) (31)
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and hence the equal-time commutators of the quantum fields:

[
Ĉi(x), Ĉj(y)

]
= 0,

[
B̂i(x), B̂j(y)

]
= 0,

[
Ĉi(x), B̂j(y)

]
= 4πiǫijk

∂

∂xk
δ(3)(x− y).

(32)

Note that these commutation relations are invariant under symplectic linear transforms of

the ~̂C and ~̂B fields into each other,

( ~̂C′(x)

~̂B′(x)

)
=

(
α −β

−γ δ

)( ~̂C(x)

~̂B(x)

)
(33)

for

(
α −β

−γ δ

)
∈ Sp(2,R) = SL(2,R), (34)

meaning : real α, β, γ, δ, αδ − βγ = 1. (35)

Now consider the free EM Hamiltonian. Classically,

Hfree =
1

4π
~C · ~E − Lfree

=
1

4πα
~E2 −

Θ

8π2
~E · ~B −

1

2e2
(
~E2 − ~B2

)
+

Θ

8π2
~E · ~B

=
1

2e2
(
~E2+ ~B2

)2
=

1

2e2

∣∣∣~E + i ~B
∣∣∣
2

(36)

regardless of the Θ angle, but in terms of the canonical ~B and ~C field,

Hfree =
1

8π Im τ

∣∣~C + τ ~B
∣∣2. (37)

Indeed,

~C + τ ~B =
1

α
~E −

Θ

2π
~B +

(
Θ

2π
+

i

α

)
~B =

1

α

(
~E + i ~B), (38)
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while

α2

2e2
=

α

8π
=

1

8π Im τ
, (39)

hence

1

2e2

∣∣∣~E + i ~B
∣∣∣
2

=
α2

2e2

∣∣∣~C + τ ~B
∣∣∣
2

=
1

8π Im τ

∣∣∣~C + τ ~B
∣∣∣
2
. (40)

To keep the classical Hamiltonian density (37) — or its quantum counterpart

Ĥfree =
1

8π Im τ

(
~̂C + τ ~̂B

)†
·
(
~̂C + τ ~̂B

)
(41)

— invariant under the symplectic transforms (33), we should accompany such transforms by

changing the τ parameter to

τ ′ =
ατ + β

γτ + δ
. (42)

Note that this transform preserves the positivity of Im τ = (4π/e2). Indeed,

Im τ ′ =
Im
[
(ατ + β)(γτ∗ + δ)

]

|γτ + δ|2
=

Im τ × (αδ − βγ)

|γτ + δ|2
=

Im τ

|γτ + δ|2
, (43)

so if Im τ > 0 then also Im τ ′ > 0.

In the context of the Hamiltonian (37), the combination ~C + τ ~B transforms to

~C′ + τ ′ × ~B′ = (α~C − β ~B) +
ατ + β

γτ + δ
× (−γ ~C + δ ~B)

=
1

γτ + δ

[
(γτ + δ)(α~C − β ~B) + (ατ + β)(−γ ~C + δ ~B)

]

=
1

γτ + δ

[
~C ×

(
γτα + δα− ατγ − βγ

)
+ ~B ×

(
−γτβ − δβ + ατδ + βδ

)]

=
1

γτ + δ

[(
~C + τ ~B

)
×
(
αδ − βγ = 1)

]

=
~C + τ ~B

γτ + δ
,

(44)
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hence
∣∣∣~C′ + τ ~B′

∣∣∣
2

Im τ ′
=

∣∣∣∣∣
~C + τ ~B

γτ + δ

∣∣∣∣∣

2

×
|γτ + δ|2

Im τ
=

∣∣∣~C + τ ~B
∣∣∣
2

Im τ
(45)

and therefore H′ = H: The free Hamiltonian (37) is indeed invariant under the combined

transforms (33) and (42) of the fields ~C and ~B and the τ parameter.

Next, let’s couple the EM fields to the electrically and magnetically charged particles.

Let me skip the Hamiltonian terms for the interaction of the EM fields with the currents and

focus on the Gauss Laws, which in the quantum theory are implemented as time-independent

operatorial constraints,

∇ · ~̂C(x) = 4πn× δ(3)(x),

∇ · ~̂B(x) = 4πm× δ(3)(x),
(46)

where n and m are the integer coefficients of the complex charge Z = Q+ iM = e(n+ τm).

To maintain these Gauss Law equations under symplectic transforms (33) of the EM fields,

the (n,m) coefficients should transform exactly like the (~C, ~B) fields, namely

(
n′

m′

)
=

(
α −β

−γ δ

)(
n

m

)
. (47)

On the other hand, the (n,m) coefficients — both before and after a symplectic trans-

form (47) — must have integer values. Therefore, the matrix elements α, β, γ, δ of the

symplectic transform must be integers! The matrices

M =

(
α −β

−γ δ

)
with integer α, β, γ, δ, αδ − βγ = 1 (48)

form an infinite discrete non-abelian group called SL(2,Z). This group is generated by

S =

(
0 −1

+1 0

)
and T =

(
1 1

0 1

)
, (49)

meaning it comprises all possible products of these matrices in any order — for example
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STTTSTTS, — subject to relations

S2 = (ST )3 = −1. (50)

From the Physics point of view, this means that once we understand how the generators S

and T act on the fields, charges, and coupling(s) of a theory in question — and what are the

physical meanings of those transforms, — we can figure out the actions of the other ZL(2,Z)

matrices by writing them as products of S’s and T ’s. Often, the action of the S generator is

particularly important, so the whole ZL(2,Z) group of dualities is called the S-duality group.

In particular, in QED S acts as electric-magnetic duality

n′ = m, m′ = −n, ~C′ = ~B, ~B′ = −~C, (51)

while

τ ′ =
−1

τ
. (52)

Note that the Θ angle changes the naive α′ = 1/α coupling duality to

α′ =
1

α
+

αΘ2

4π2
, Θ′ =

−α2Θ

1 + (αΘ/2π)2
. (53)

The other generator T of the S-duality group acts as

~B′ = ~B, ~C′ = ~C − ~B, m′ = m, n′ = n − m : (54)

the magnetic charges remain invariant, but the electric charges of the magnetic monopoles

and dyons change by (minus) their magnetic charges. At the same time,

T : τ → τ ′ = τ + 1 =⇒ α′ = α but Θ′ = Θ + 2π. (55)

Consequently, two theories with the same α but Θ2 − Θ1 = 2πk (for an integer k) are not

quite identical but are related by the T k transform: They should have similar non-magnetic

particles, but the magnetically charged particles should have different electric charges, n2 −

n1 = −k(m1 = m2).
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