
PHY–396 T: SUSY Mid-term Exam. Due October 28.

Please do not waste time and paper by copying the homework solutions or any notes I posted

on the web, simply reference the appropriate question or equation and go ahead. Ditto for

anything explicitly derived in class or explained in any textbook. But if you are quoting a book

or an article, make sure to spell out all the intermediate steps.

1. As a warm-up exercise, consider a semi-classical SUSY gauge theory with G = SO(Nc)

gauge group (assume Nc > 4) and Nf × Nc chiral superfields Qfc forming Nf copies

of the Nc–vector multiplet Nc of the gauge group. There is no classical superpotential,

Wtree(Q) = 0.

FYI: For SO(N) groups, Index(vector) = 1 and Index(adjoint) = N − 2.

(a) Let’s start with Nf = 1. Write down the classical scalar potential of this theory and

describe its flat directions. Specifically, show that modulo SO(Nc) there is just one

flat direction and write down the gauge-invariant chiral modulus M for this direction.

(b) Describe the Higgs mechanism for 〈M〉 6= 0. Work in the component field formalism

and show how all the components of a massive vector multiplet get their masses.

(c) Now consider several flavors, Nf > 1 (but Nf ≤ Nc − 2). Turn on the ‘squark’

VEVs 〈Q〉, first f = 1, then f = 2, etc., etc., ending with f = Nf , while keeping

Vscalar = 0 (and hence unbroken SUSY) at each stage. Show that generically, this

sequence Higgses the SO(Nc) gauge symmetry down to SO(Nc −Nf ).

(d) Argue that for Nf > 1 but Nf ≤ Nc − 2, the independent moduli form a symmetric

Nf ×Nf matrix Mff ′ = Mf ′f =
∑

cQcfQcf ′ .
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2. Now consider the quantum SO(Nc) SUSY gauge theory. For simplicity, let’s assume just

one flavor, Nf = 1.

(a) Take Nf = 1 and assume a large Higgs VEV 〈Q〉 ≫ Λ. Describe the low-energy

EFT for E ≪ 〈Q〉 and calculate its Wilsonian gauge coupling τ loww — or rather its

dimensional transmutant Λlow — in terms of the Λhigh and the modulus M.

(b) Let us fix the modulus field for a moment and focus on the infra-red behavior of

the gauge theory. How many vacua does it have, and what is the order parameter

distinguishing those vacua?

(c) Now un-fix the modulus field M and calculate the non-perturbative effective super-

potential Wn.p.(M) due to gaugino condensation.

(d) For 〈Q〉 ≫ Λ the gauge coupling is weak at the Higgs scale, so we may approximate

the Kähler function for the modulus field by the tree-level

Ktree(M∗,M) = Q†Q =
√
M∗M. (1)

Use this Kähler function and the effective superpotential you have obtained in part

(c) to calculate the scalar potential V (M∗,M) for the modulus and show that this

potential leads to runaway M → ∞.

Now let Wtree =
m
2

∑

cQ
2
c .

(e) For small mass m ≪ Λ, the effective superpotential for the modulus comprises

Wtree(M) +Wn.p.(M). Show that this superpotential has several SUSY vacua, and

calculate the expectation values 〈M〉 and 〈S〉 for each vacuum.

(f) For largem ≫ Λ, we may integrate out theQ fields perturbatively, and then study the

IR behavior in terms of the low-energy EFT, which now is pure SO(N) SYM theory.

Calculate the Λlow of that effective theory — and hence the gaugino condensate 〈S〉
in the m ≫ Λ regime — as a function of Λ and m parameters of the original (UV)

theory.

(g) Compare the formulae for the gaugino condensate 〈S〉 = function(m,Λ) in the two

regimes, m ≪ Λ and m ≫ Λ. What does this comparison tell you about the phase

structure of the theory?
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3. Next, an exercise in superfield Feynman rules. Consider SQED with an extra neutral

chiral superfield C with a Yukawa coupling to the charged chiral superfields A (charge =

+1) and B (charge = −1). For simplicity, let all the fields be massless, thus

Lphys =

∫

d4θ
(

Ae+2VA + Be−2VB + CC
)

+

∫

d2θ

(

1

4e2
WαWα − yABC

)

+ H. c.

(2)

Let’s focus on the wave-function renormalization of the neutral chiral field C. At the

one-loop level, this renormalization depends only on the Yukawa coupling y, but at the

two-loop and higher levels it depends on both the Yukawa and the gauge couplings.

(a) Draw all the two-loop 1PI Feynman diagrams contributing to the CC amplitude.

If a diagram has a nested divergence (i.e., includes a UV-divergent one-loop sub-

diagram), draw the one-loop diagram containing a counter-term vertex that would

cancel this sub-divergence in situ.

(b) Evaluate the D,D algebra for each diagram and write the resulting amplitude as

∫

d4θ C(k, θ)C(−k, θ)× a prefactor× a momentum integral (3)

where the prefactor comprises powers of e and y and purely numeric factors, if any.

Hint:
∫

d4θD2C ×D
2
C = 16k2 ×

∫

d4θ CC.

(c) Without actually evaluating the momentum integrals, show that for one of the two-

loop diagrams the momentum integral is finite, while every other two-loop diagram

involves exactly the same logarithmically divergent integral.

(d) Use part (c) and the prefactors you obtained in part (b) to show that the two-loop

contribution to the anomalous dimension of the C field has form

γ2 loop(C) = |y|2 ×
(

|y|2 − 4e2
)

× an overall numeric constant. (4)

The numeric constant here follows from the regularized divergence of the momentum

integral you should have identified in part (c). But evaluating this integral would take

way too much time for this exam, so the problem ends here.
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4. Finally, an exercise on NSVZ beta-functions and IR fixed points. Consider the [SU(N)]3

SUSY gauge theory with a quiver diagram

N

N

N (5)

That is, there are 3(N2 − 1) vector superfields of the SU(N) × SU(N) × SU(N) gauge

symmetry and 9N2 chiral superfields comprising the following multiplets:

A1, A2, A3 ∈ (1,N,N),

B1, B2, B3 ∈ (N, 1,N),

C1, C2, C3 ∈ (N,N, 1).

(6)

In N × N matrix notations, there are 9 matrices of chiral superfields, and the tree-level

superpotential is

W = λ
∑

i,j,k=1,2,3

ǫijk tr(AiBjCk). (7)

Note the SU(3) global symmetry of the theory: Ai 7→ U j
i Aj , Bi 7→ U j

i Bj , Ci 7→ U j
i Cj ,

all for the same SU(3) matrix U .

For your information, this gauge theory obtains in type IIB superstring when a stack of

N coincident D3–branes sits at the orbifold singularity C
3/Z3. When N × gstring ≪ 1,

the open strings connecting the D3–branes give rise to the gauge and chiral superfields of

the quiver (5). In the opposite limit N × gstring ≫ 1, the branes curve the 10D spacetime

and give rise to the gravity dual of the gauge theory, namely SUGRA on the smooth

manifold AdS5 × (S5/Z3).

But you do not need to know any string theory or gauge-gravity duality to do this exam.

This problem focuses only on the field-theoretical aspects of the supersymmetric gauge

theory in question.
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(a) The quiver theory (5) has 4 couplings, namely 3 gauge couplings g1, g2, g3, and the

Yukawa coupling λ. Write down the exact β–functions for all 4 couplings in terms of

the anomalous dimensions γA, γB, and γC .

(b) Show that the fixed points of the renormalization group satisfy

γA = γB = γC = 0. (8)

Also, show that the solutions to eqs. (8) form a fixed line in the coupling space

parametrized by

g1 = g2 = g3 = g∗(|λ|) (9)

for some function g∗(|λ|).

(c) Now calculate the anomalous dimensions to one-loop order. To save time, open

the solutions to the homework set#6, read the preamble to problem 1(c), and use

eq. (S.17).

Show that the fixed line (9) goes through the week-coupling region, and calculate the

g∗(|λ|) in that region.

(d) Finally, show that the fixed line is IR stable, or at least IR stable in the weak coupling

regime. That is, if we start with weak UV couplings which do not exactly satisfy

eqs. (9) but are not too far from it in the coupling space, then in the IR direction

of the renormalization group, the couplings flow towards the fixed line rather than

away from it.
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