PHY-396 T: SUSY Mid-term Exam. Due October 28.

Please do not waste time and paper by copying the homework solutions or any notes I posted
on the web, simply reference the appropriate question or equation and go ahead. Ditto for
anything explicitly derived in class or explained in any textbook. But if you are quoting a book

or an article, make sure to spell out all the intermediate steps.

1. As a warm-up exercise, consider a semi-classical SUSY gauge theory with G = SO(N,)
gauge group (assume N. > 4) and Ny x N, chiral superfields (s, forming Ny copies
of the N.—vector multiplet N of the gauge group. There is no classical superpotential,
Wiree (@) = 0.

FYI: For SO(N) groups, Index(vector) = 1 and Index(adjoint) = N — 2.

(a) Let’s start with Ny = 1. Write down the classical scalar potential of this theory and
describe its flat directions. Specifically, show that modulo SO(N,) there is just one

flat direction and write down the gauge-invariant chiral modulus M for this direction.

(b) Describe the Higgs mechanism for (M) # 0. Work in the component field formalism

and show how all the components of a massive vector multiplet get their masses.

(c) Now consider several flavors, Ny > 1 (but Ny < N, — 2). Turn on the ‘squark’
VEVs (Q), first f = 1, then f = 2, elc., etc., ending with f = Ny, while keeping
Vicalar = 0 (and hence unbroken SUSY) at each stage. Show that generically, this
sequence Higgses the SO(N,) gauge symmetry down to SO(N. — Ny).

(d) Argue that for Ny > 1 but Ny < N, — 2, the independent moduli form a symmetric
Ny x Ny matrix My = Mpp =3 QcrQepr-



2. Now consider the quantum SO(N,) SUSY gauge theory. For simplicity, let’s assume just

one flavor, Ny = 1.

(a)

Take Ny = 1 and assume a large Higgs VEV (Q) > A. Describe the low-energy
EFT for £ < (Q) and calculate its Wilsonian gauge coupling 7.°%

W — or rather its

dimensional transmutant A°Y — in terms of the AM8h and the modulus M.

Let us fix the modulus field for a moment and focus on the infra-red behavior of
the gauge theory. How many vacua does it have, and what is the order parameter

distinguishing those vacua?

Now un-fix the modulus field M and calculate the non-perturbative effective super-

potential W, , (M) due to gaugino condensation.

For (@) > A the gauge coupling is weak at the Higgs scale, so we may approximate
the Kahler function for the modulus field by the tree-level

Kpee(M* M) = Q'Q = VM*M. (1)

Use this Kahler function and the effective superpotential you have obtained in part
(c) to calculate the scalar potential V (M*, M) for the modulus and show that this

potential leads to runaway M — oc.

Now let Wiree = 5 >, Q2.

(e)

For small mass m < A, the effective superpotential for the modulus comprises
Wiree(M) + Wy p.(M). Show that this superpotential has several SUSY vacua, and

calculate the expectation values (M) and (S) for each vacuum.

For large m > A, we may integrate out the () fields perturbatively, and then study the
IR behavior in terms of the low-energy EFT, which now is pure SO(N) SYM theory.
Calculate the Ajgy, of that effective theory — and hence the gaugino condensate (S)
in the m > A regime — as a function of A and m parameters of the original (UV)

theory.

Compare the formulae for the gaugino condensate (S) = function(m, A) in the two
regimes, m < A and m > A. What does this comparison tell you about the phase

structure of the theory?



3. Next, an exercise in superfield Feynman rules. Consider SQED with an extra neutral
chiral superfield C' with a Yukawa coupling to the charged chiral superfields A (charge =
+1) and B (charge = —1). For simplicity, let all the fields be massless, thus

Lohys = / d*o (Ze+2VA + Be 2B + Uc)
1 (2)
+/d29 (@ Wow, — yABC) + H.c

Let’s focus on the wave-function renormalization of the neutral chiral field C. At the
one-loop level, this renormalization depends only on the Yukawa coupling y, but at the

two-loop and higher levels it depends on both the Yukawa and the gauge couplings.

(a) Draw all the two-loop 1PI Feynman diagrams contributing to the C'C' amplitude.
If a diagram has a nested divergence (i.e., includes a UV-divergent one-loop sub-
diagram), draw the one-loop diagram containing a counter-term vertex that would

cancel this sub-divergence in situ.

(b) Evaluate the D, D algebra for each diagram and write the resulting amplitude as
/d49 C(k,0)C(—k,0) x a prefactor x a momentum integral (3)

where the prefactor comprises powers of e and y and purely numeric factors, if any.
. =2 =
Hint: [d%0 D?C x D°C = 16k* x [d*0 CC.

(c) Without actually evaluating the momentum integrals, show that for one of the two-

loop diagrams the momentum integral is finite, while every other two-loop diagram

involves exactly the same logarithmically divergent integral.

(d) Use part (c) and the prefactors you obtained in part (b) to show that the two-loop

contribution to the anomalous dimension of the C field has form

Floop () = |y|? x (ly|* — 4€*) x an overall numeric constant. (4)

The numeric constant here follows from the regularized divergence of the momentum
integral you should have identified in part (c). But evaluating this integral would take

way too much time for this exam, so the problem ends here.



4. Finally, an exercise on NSVZ beta-functions and IR fixed points. Consider the [SU(N)]?
SUSY gauge theory with a quiver diagram

Q@ g

9

That is, there are 3(N? — 1) vector superfields of the SU(N) x SU(N) x SU(N) gauge

symmetry and 9N? chiral superfields comprising the following multiplets:

N

,IN), (6)
1

In N x N matrix notations, there are 9 matrices of chiral superfields, and the tree-level
superpotential is
W = A Z ik tl"(AiBjCk). (7)
1,5,k=1,2,3
Note the SU(3) global symmetry of the theory: A; — UijAj, B; — Uiij, Ci — UijCj,
all for the same SU(3) matrix U.

For your information, this gauge theory obtains in type IIB superstring when a stack of
N coincident D3-branes sits at the orbifold singularity C3/Z3. When N x Gstring < 1,
the open strings connecting the D3-branes give rise to the gauge and chiral superfields of
the quiver (5). In the opposite limit N X gsring > 1, the branes curve the 10D spacetime
and give rise to the gravity dual of the gauge theory, namely SUGRA on the smooth
manifold AdSs x (S°/Zs3).

But you do not need to know any string theory or gauge-gravity duality to do this exam.
This problem focuses only on the field-theoretical aspects of the supersymmetric gauge

theory in question.



(a)

The quiver theory (5) has 4 couplings, namely 3 gauge couplings g1, g2, g3, and the
Yukawa coupling \. Write down the exact S—functions for all 4 couplings in terms of

the anomalous dimensions v4, vg, and y¢.

Show that the fixed points of the renormalization group satisfy

YA = 7B = ¢ = 0. (8)

Also, show that the solutions to eqs. (8) form a fized line in the coupling space

parametrized by
g1 =92 =93 = g (A (9)

for some function g*(|Al).

Now calculate the anomalous dimensions to one-loop order. To save time, open

eq. (S.17).
Show that the fixed line (9) goes through the week-coupling region, and calculate the
g*(JA]) in that region.

Finally, show that the fixed line is IR stable, or at least IR stable in the weak coupling
regime. That is, if we start with weak UV couplings which do not exactly satisfy
egs. (9) but are not too far from it in the coupling space, then in the IR direction
of the renormalization group, the couplings flow towards the fixed line rather than

away from it.


http://localhost/~vsk1958/Classes/2025f/sol06.pdf

