
ANOMALIES, GAUGE COUPLINGS, AND THE NSVZ FORMULA

Let’s start with axial or chiral anomalies in the ordinary gauge theories. The Adler–

Bardeen theorem is often mis-stated as the axial or chiral anomalies exist only at one

loop level, but this is not exactly true. A more accurate statement of the theorem says: an

anomaly cancels at the one loop level, then it would never show up at higher loop levels. But

if an anomaly does not cancel out at the one-loop level, then the higher loop orders may

‘dress-up’ the anomalous amplitudes.

For example, consider the anomalous axial symmetry of the ordinary QED with the

massless electron. The anomaly originates on the one-loop triangle graph involving an axial

current and two photons, but the anomalous amplitudeM(∂µJ
5µ → γγ) receives higher-loop

corrections from the re-scattering of the two photons,

∂µJ
5µ

(1)

The Adler–Bardeen theorem has interesting corollary for the Θ angle of a gauge theory: the

effect of a chiral redefinition of the charged fermion fields on the Θ angle is exact at one

loop. For an example, consider QED with a massless electron coupled to a CP-odd modulus

scalar φ,

L =
−1

4e2
F2
µν + Ψγµ(i∂µ + eAµ)Ψ +

Θ(φ)

64π2
(
ǫFF

)
+

C(φ)

4
∂µφ×Ψγ5γµΨ. (2)

Focus on the amplitude connecting the modulus quantum δφ to the CP-odd combination

(ǫFF) of two photons,

δφ





(
ǫFF

)
. (3)

There is a tree-level contribution to this amplitude from the modulus dependence of the Θ
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angle,

M1 =
1

64π2
∂Θ

∂φ
. (4)

But there is also a one-loop contribution stemming from the coupling of ∂µφ to the axial

current J5µ and the one-loop anomalous non-conservation of that current, thus

C(φ)

4
∂µδφ× J5µ −−−−→

by parts
−
C(φ)

4
δφ× ∂µJ

5µ = −
C(φ)

4
δφ×

+1

16π2
(
ǫFF

)
, (5)

hence

M2 = −
C(φ)

64π2
. (6)

In addition, there are going to be higher-order corrections due to photon re-scattering, but

all such corrections affect the tree-level amplitude (4) and the anomalous amplitude (6) in

exactly the same way, thus

Mnet =
1

64π2

(
∂Θ

∂φ
− C(φ)

)
×

(
1 +

(
rescattering

corrections

))
(7)

where the red factor comes as an inseparable combination of ∂Θ/∂φ and C(φ).

Now consider a modulus-dependent axial redefinition of the electron field,

Ψ′(x) = exp
(
+iα(φ(x))γ5

)
×Ψ(x), Ψ

′

(x) = Ψ(x)× exp
(
+iα(φ(x))γ5

)
. (8)

This redefinition does not change the vector or the axial currents of the electron field, but

it does change its kinetic energy term by

Ψ
′

γµ(i∂µ + eAµ)Ψ
′ = Ψγµ(i∂µ + eAµ)Ψ − (∂µα(φ))×Ψγµγ5Ψ

= Ψγµ(i∂µ + eAµ)Ψ +
∂α

∂φ
∂µφ×

(
J5µ = Ψγ5γµΨ

)
.

(9)

In the context of the Lagrangian (2), the extra term here can be canceled by modifying the

C(φ) coefficient of the axial electron-modulus coupling,

C ′(φ) = C(φ) − 4
∂α

∂φ
. (10)

By itself, this modification may change the axionic coupling of the modulus to the photons,

but since C(φ) always enters in an inseparable combination with ∂Θ/∂φ, we may precisely
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cancel the effect of this modification by also changing the Θ angle as

Θ′(φ) = Θ(φ) − 4α(φ). (11)

Note that this change of the Θ angle is completely determined at the one-loop level of the

axial anomaly and is not subject to any higher-loop corrections.

⋆ ⋆ ⋆

Now consider SQED with a massless electron coupled to a chiral modulus superfield M

and its conjugate M . The Lagrangian is

L =

∫
d2θ d2θ̄ Z(M,M)×

(
Ae+2VA + Be−2VB

)

+

∫
d2θ

iτ(M)

16π
×WαWα +

∫
d2θ̄

−iτ∗(M)

16π
W α̇W

α̇
,

(12)

where τ(M) is a holomorphic function of the modulus while Z(M,M) is a real analytic

function. Expanding this Lagrangian in components, and focusing on just the EM and

electron fields — i.e., disregarding the photino and the selectron fields and their interactions,

— we get terms very similar to (2), namely

L ⊃ −
Im τ(M)

16π
F2
µν + Z(M,M)×Ψγµ

(
i
2

↔

∂ µ + Aµ

)
Ψ

+
Re τ(M)

32π

(
ǫFF) + Lµ(M,M)×Ψγ5γµΨ.

(13)

The Lµ here is the vector component of the composite Z(M,M) superfield which exists when

the moduli scalars are non-constant in space,

Z(M,M) = 2(θσµθ̄)× Lµ + other components, (14)

specifically,

2Lµ = −i
∂Z

∂M
× ∂µM + i

∂Z

∂M
× ∂µM. (15)

Note that in the coupling Lµ × Ψγ5γµΨ, the electron fields Ψ,Ψ are non-canonically

normalized because of the Z factor in their kinetic term. Consequently, the canonically
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normalized axial current in terms of these fields is

J5µ = Z ×Ψγ5γµΨ, (16)

and the interaction of this current with the moduli scalars are given by

Lµ

Z
× J5µ (17)

where

Lµ

Z
=

1

2Z

(
−i

∂Z

∂M
× ∂µM + i

∂Z

∂M
× ∂µM

)
=

(
−
i

2

∂ logZ

∂M
∂µM +

i

2

∂ logZ

∂M
∂M

)
.

(18)

Hence, the anomalous interactions of the moduli quanta with (the CP-odd combinations of)

two photons are

Γanomalous =

(
−
i

2

∂ logZ

∂M
× ∂µδM +

i

2

∂ logZ

∂M
× ∂µδM

)
× J5µ

〈〈 integrating by parts 〉〉

=

(
i

2

∂ logZ

∂M
× δM −

i

2

∂ logZ

∂M
× δM

)
× ∂µJ

5µ

=

(
i

2

∂ logZ

∂M
× δM −

i

2

∂ logZ

∂M
× δM

)
×

1

16π2
(
ǫFF

)

=
1

32π2
(
ǫFF

)
×

(
iδM ×

∂

∂M
− iδM ×

∂

∂M

)
logZ(M,M).

(19)

In addition, there is a tree-level interaction stemming the from moduli dependence of 2πΘ =

Re τ(M). thus

Γtree =
1

32π

(
ǫFF)×

(
δM ×

∂

∂M
+ δM ×

∂

∂M

)
Re τ

=
1

32π

(
ǫFF)×

(
iδM ×

∂

∂M
− iδM ×

∂

∂M

)(
Im τ =

1

αw(M,M)

) (20)

where the second equality follows from the holomorphy of τ(M). Thus, combining the two

effects, we get the net amplitudes involving one modulus quantum and a CP-odd combination

4



of two photons:

δM ×
(
ǫFF

)
amplitude =

i

32π2
∂

∂M

(
π

αw
+ logZ

)
,

δM ×
(
ǫFF

)
amplitude =

−i

32π2
∂

∂M

(
π

αw
+ logZ

)
.

(21)

Note the same combination of the 1/αw and logZ in both amplitudes

The reason why the CP-odd amplitudes (21) are related to the moduli dependence of

CP-even parameters α(M,M) and Z(M,M) is supersymmetry of the scattering amplitudes.

Indeed, as long as the supersymmetry remains unbroken, the physical amplitudes moduli

quanta and their superpartners to the photons and photinos are related to each other by

SUSY. In particular, the amplitudes

δM or δM





FµνF
µν (22)

ψM or ψ̄M

F

λ or λ̄

(23)

δM or δM





1
2

(
ǫFF

)
(24)

are all equal to each other modulo factors of ±i. Consequently, both CP-odd amplitudes (21)

are in agreement with the CP-even amplitudes involving the same modulus scalar and two

photons being

(
δM or δM

)
×

(
FµνF

µν
)
amplitudes = −

1

16π2

(
∂

∂M
or

∂

∂M

)(
π

αw
+ logZ

)
(25)

where the RHS is indeed CP-even.
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In the superfield formulation, we may combine the amplitudes (22) through (24) in a

superfield amplitude and even derive it from the Konishi anomaly. Indeed, consider the

variation of the SQED Lagrangian

L =

∫
d2θ d2θ̄ Z(M,M)×

(
Ae+2eVA + Be−2eVB

)

+
i

16π

∫
d2θ τ(M)×WαWα +

−i

16π

∫
d2θ̄ τ∗(M)×W α̇W

α̇
(26)

due to infinitesimal moduli variations δM(y, θ) and δM(ȳ, θ̄). First, there is a tree level

variance due to moduli-dependent τ(M), thus

Γtree = δLV =
i

16π

∂τ

∂M
×

∫
d2θ δM ×WαWα +

−i

16π

∂τ∗

∂M
×

∫
d2θ δM ×W α̇W

α̇
. (27)

For future reference, we may use holomorphy of the Wilsonian coupling τ to make both

derivatives (WRT M or M) act on Im τ = − i
2τ +

i
2τ

∗ (instead of just on τ or on τ∗), thus

Γtree = −
1

8π

∂ Im τ

∂M
×

∫
d2θ δM ×WαWα −

1

8π

∂ Im τ

∂M
×

∫
d2θ δM ×W α̇W

α̇
. (28)

Second, these is variance of the electron Lagrangian due to moduli dependence of Z and

hence anomalous one-loop coupling to the vector superfields:

δLE =

∫
d2θ d2θ̄ δZ(M,M)×

(
Ae+2eVA + Be−2eVB =

1

Z
Jaxial

)

=

∫
d2θ d2θ̄

(
∂ logZ

∂M
× δM +

∂ logZ

∂M
× δM

)
× Jaxial

=
∂ logZ

∂M
×

∫
d2θ d2θ̄ δM × Jaxial +

∂ logZ

∂M
×

∫
d2θ d2θ̄ δM × Jaxial

(29)

where
∫
d2θ d2θ̄ δM × Jaxial =

∫
d2θ δM × −1

4 D
2
Jaxial

〈〈 by Konishi anomaly 〉〉

=

∫
d2θ δM ×

−1

8π2
WαWα

(30)
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and likewise ∫
d2θ d2θ̄ δM × Jaxial =

∫
d2θ̄ δM × −1

4 D
2Jaxial

〈〈 by Konishi anomaly 〉〉

=

∫
d2θ δM ×

−1

8π2
W α̇W

α̇
.

(31)

Altogether,

Γanomaly = −
1

8π2
∂ logZ

∂M
×

∫
d2θ δM ×WαWα −

1

8π2
∂ logZ

∂M
×

∫
d2θ δM ×W α̇W

α̇
, (32)

so combining it with the tree-level amplitude we get

Γ = −
1

8π2
∂

∂M

(
π

αw
+ logZ

)
×

∫
d2θ δM ×WαWα

−
1

8π2
∂

∂M

(
π

αw
+ logZ

)
×

∫
d2θ δM ×W α̇W

α̇
.

(33)

The amplitude (33) includes tree-level and one-loop effects, but what about the higher-

loop corrections? By holomorphy of τ(W ), the tree π/αw term is not subject to any moduli

dependent corrections. Likewise, the Konishi anomaly is exact at the one-loop level. How-

ever, the couplings of the anomalous current Jaxial to the moduli quanta follow from the

electron field strength factor Z(M,M), and that Z factor is subject to quantum corrections

at all orders of the perturbation theory. Thus, to account for the higher-loop corrections

to the amplitude (33), all we need is to replace the bare Z factor with the renormalized

Zr(M,M,E), where E is the energy scale of the scattering process:

Γall loops = −
1

8π2
∂

∂M

(
π

αw(M,M)
+ logZr(M,M,E)

)
×

∫
d2θ δM ×WαWα

−
1

8π2
∂

∂M

(
π

αw(M,M)
+ logZr(M,M,E)

)
×

∫
d2θ δM ×W α̇W

α̇
.

(34)

Note that both types of amplitudes follow from the derivatives of the same inseparable

combination

T (M,M,E) =
π

αw(M,M)
+ logZr(M,M,E). (35)

I shall explain the physical meaning of this combination in a moment, but first let’s see how

to keep it invariant under the chiral redefinitions of the electron superfields.
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In the ordinary QED, we have dealt with with the axial symmetries Ψ′ = exp(iαγ5)Ψ —

or in terms of the Weyl fermions, ψ′

a = exp(+iα)ψa, ψ
′

b = exp(+iα)ψb — and also moduli-

dependent axial field redefinitions for non-constant α(x) = α(φ(x)). In the SQED, we may

generalize such axial field redefinitions by promoting α(x) to arbitrary chiral superfields

Λ(y, θ). Thus, let

A′(y, θ) = exp
(
+iΛ(y, θ)

)
× A(y, θ), B′(y, θ) = exp

(
+iΛ(y, θ)

)
× B(y, θ),

A
′

(ȳ, θ̄) = exp
(
−iΛ(ȳ, θ̄)

)
× A(ȳ, θ̄), B

′

(ȳ, θ̄) = exp
(
−iΛ(ȳ, θ̄)

)
× B(ȳ, θ̄),

V ′(x, θ, θ̄) = V (x, θ, θ̄), (36)

where Λ(y, θ) must be chiral to preserve the chirality of A′ and B′ superfields and its con-

jugate Λ(ȳ, θ̄) must be antichiral for similar reasons. In general, the SQED Lagrangian (26)

is NOT invariant under such transforms; instead,

(
Ae+2eVA + Be−2eVB

)
′

=
(
Ae+2eVA + Be−2eVB

)
× exp

(
iΛ− iΛ

)
. (37)

However, if we make Λ a function of the modulus M , and at the same time we redefine the

charged fields we also change the Z(M,M) factor such that

Z ′(M,M) = Z(M,M)× exp
(
−iΛ + iΛ

)
, (38)

then the classical Lagrangian of SQED would remain invariant. Likewise, the effective classi-

cal action of the quantum theory would remain invariant provided the renormalized Z factor

transforms in the same way,

Z ′

r(M,M,E) = Zr(M,M,E)× exp
(
−iΛ + iΛ

)
. (39)

But changing the moduli dependence of the Z factor changes the anomalous coupling

of the moduli to the vector superfield. To compensate for this effect, we should also change
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the holomorphic coupling τ(M) such that the combination (35) remains invariant,

π Im τ ′ + logZ ′

r = π Im τ + logZr . (40)

According to eq. (39),

logZ ′(M,M,E) − logZ(M,M,E) = −iΛ(M) + iΛ(M) = 2 ImΛ(M). (41)

Fortunately, this is a harmonic function of the complex modulus, so it can be compensated

by a holomorphic change of τ :

τ ′(M) = τ(M) −
2

π
Λ(M).

Or in bosonic components,

Θ′ = Θ − 4ReΛ, (42)

exactly as in the ordinary QED (where α plays the role of ReΛ), and also

1

α′
w

=
1

αw
−

2

π
ImΛ. (43)

Thus, a rescaling — as opposed to a mere phase change — of SQED’s charged superfields

must be accompanies by an adjustment to its Wilsonian gauge coupling αw. Consequently,

the Wilsonian gauge coupling is not a physical coupling that can be directly measured by

scattering amplitudes but just a parameter of the bare Lagrangian of the quantum theory.

Instead, the physical gauge coupling is related to the invariant combination

T (M,M,E) =
π

α(M,M)
+ logZr(M,M,E). (35)

To see how this works, let’s go back to the CP-even bosonic amplitudes

δM or δM





(
F2
µν

)
. (44)

Take the momentum q of the modulus quantum δM or δM to zero, q → 0, while the

two photons have finite off-shell momenta ±k, k2 = −E2. In this limit, we may treat the
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modulus as a global parameter, so the amplitudes (44) become simply the ∂/∂M and ∂/∂M

derivatives of the amplitude for two off-shell photons and no moduli quanta at all, thus

δM or δM
q = 0





(
F2
µν

)

=

(
∂

∂M
or

∂

∂M

)




(
F2
µν

)

(45)

But the two-photon amplitude on the bottom line here is precisely the running gauge coupling

— or rather −1/4e2r — renormalized to energy scale E2 = −k2. Thus,

lim
q→0

((
δM or δM

)
×F2

µν amplitude
)

=

(
∂

∂M
or

∂

∂M

)
−1

4e2r
. (46)

At the same time, back in eq. (25) we have evaluated the same CP-even amplitude to

(same amplitude) =

(
∂

∂M
or

∂

∂M

)
−T

16π2
(47)

from which we conclude that

8π2

e2r(M,M,E)
= T (M,M,E) + (a moduli-independent constant). (48)

Note that the ‘constant’ term on the RHS should be moduli-independent but it may depend

on the renormalization energy scale E. Also, the Wilsonian gauge coupling on the RHS of

eq. (48) implicitly depends on the UV cutoff Λ of the theory, so the moduli-independent

term may also depend on the cutoff, thus

π

αr(M,M,E)
=

π

αw(M,M,Λ)
+ logZr(M,M,E) + F (E,Λ) (49)

for some unknown function F of the renormalization energy scale E and the UV cutoff Λ,

but not of the moduli.
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To determine that function, we use two arguments: First, a theory with massless particles

does not have any inherent energy scales besides the cutoff, so by dimensional analysis

F (E,Λ) = F (E/Λ). (50)

Second, the running couplings αr and Zr depend on the renormalization energy scale E but

not on the cutoff Λ, so the cutoff dependence of the other two terms in eq. (49) should cancel

out,

π

αw(M,M,Λ)
+ F (E/Λ) should be Λ-independent. (51)

Now, by reasons of holomorphy, the Wilsonian gauge coupling’s beta-function is exact at

one-loop order,

∂ew(M,M,Λ)

∂ log Λ
= βw(e) =

e3

8π2
, exactly, (52)

hence

∂

∂ log Λ

(
π

αw
=

4π2

e2w

)
= −

8π2

e3w
× βw(ew) = −1 (53)

and therefore

π

αw(M,M,Λ)
=

π

αw(M,M,Λ0)
− log

Λ

Λ0
, exactly. (54)

Plugging this formula into eq. (51), we immediately see that it calls for

F (E/Λ) = log
Λ

E
+ numeric constant (55)

and hence

π

αw(M,M,Λ)
+ F (E/Λ) =

π

αw(M,M,Λ0)
+ log

Λ0

E
+ const. (56)

Plugging this formula into eq. (49), we arrive at the all-loop Novikov–Shifman–Vainshtein–

Zaharov formula for the running SQED gauge coupling,

π

αr(M,M,E)
=

π

αw(M,M,Λ0)
+ log

Λ0

E
+ const + logZr(M,M,E). (57)
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There is a related NSVZ equation for the SQED beta-function, which obtains by taking

the derivatives of both sides of (57) WRT logE at fixed values of the moduli. On the LHS,

we have

∂

∂ logE

π

αr(E)
= −

8π2

e3r
×

∂er
∂ logE

= −
8π

e3r
× β(e). (58)

On the RHS of (57), the Wilsonian gauge coupling depends on the reference cutoff Λ0 but

not on running energy scale E, while the running Zr factor obeys

∂ logZr

∂ logE
= 2γ(e) (59)

where γ(e) is the anomalous dimension of the electron superfields A and B. Thus altogether

−
8π2

e3r
× β(e) = −1 + 2× γ(e) (60)

and therefore

β(e) =
e3

8π2
×

(
1− 2γ(e)

)
(61)

to all orders of the perturbation theory. Thus, given the electron’s anomalous dimension γ to

an n-loop order, this formula immediately gives us the SQED beta-function to an (n+1)-loop

order.

Generalizations to Other Gauge Theories

All our results about the Konishi anomaly, the Wilsonian gauge couplings, and the NSVZ

beta-functions in SQED may be generalized to more complicated supersymmetric gauge

theories. Let’s start with theories with a U(1) gauge group — just like the SQED — but a

general spectrum of charged chiral superfields Φ1, . . . Φn of respective charges q1e, . . . , qne.

All Wilsonian couplings of the theory may depend on some moduli, so the Lagrangian is

L =

∫
d2θ d2θ̄

n∑

i=1

Zi(M,M)× Φi exp(2qiV )Φi

+

∫
d2θ

(
iτ(M)

16π
WαWα + W (Φ,M)

)
+ H. c.

(62)

For consistency of the theory, every term in the superpotential W (Φ) must have net charge
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q = 0, and the the gauge symmetry must be anomaly-free,

n∑

i=1

q3i = 0 and
n∑

i=1

qi = 0. (63)

In the complete absence of the superpotential, W (φ) ≡ 0, the Lagrangian (62) has a

classical global [U(1)]n symmetry, Ai → exp(iαi)Ai, with the corresponding current super-

field

Ji = Zi × Φie
2qiV Φi . (64)

Classically, each current obeys D2Ji = 0, D
2
Ji = 0, but in the quantum theory there are

Konishi anomalies

−1
4D

2
Ji = −

q2i
16π2

WαWα , −1
4D

2Ji = −
q2i

16π2
W α̇W

α̇
. (65)

Note that a chiral redefinition of the charged fields

Φ′

i(y, θ) = exp
(
iΛi(M(y, θ))

)
× Φi(y, θ), Φ

′

(ȳ, θ̄) = exp
(
−iΛi(M(ȳ, θ̄))

)
× Φi(ȳ, θ̄),

(66)

accompanied by

Z
′(r)
i (M,M,E) = Z

(r)
i (M,M,E)× exp

(
−iΛi(M) + iΛi(M)

)
(67)

preserves the effective classical Lagrangian for the charged fields, but modifies the couplings

of the moduli to the Konishi anomalies (65) and hence the anomalous couplings of the moduli

to the gauge fields. However, for each Φi rescaled by exp(iΛi(M)), we may compensate for

changing the δM × WαWα anomalous coupling by changing the tree-level holomorphich

coupling τ(M) by

∆τ(M) = −
q2i
π
Λi . (68)

Altogether, we need

τ ′(M) − τ(M) = −
1

π

n∑

i=1

q2i × Λi(M), (69)
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which makes the combination

2T (M,M,R) = 2π Im τ(M) +
n∑

i=1

q2 × logZ
(r)
i (M,M), (70)

invariant under all rescalings (66) of the charged fields. Similar to SQED, it is this invariant

combination which governs the modulus+two photons amplitudes.

Eventually, proceeding exactly as in SQED case, we end up with the NSVZ equation for

the running gauge coupling

2π

αr(M,M,E)
=

2π

αw(M,M,Λ0)
+

∑

i

q2i × log
Λ0

E
+

∑

i

q2i × logZ
(r)
i (M,M,E), (71)

and ultimately the NSVZ equation for the beta-function,

β(e) =
e3

16π2

n∑

i=1

q2i ×
(
1− 2γi(e)

)
(72)

where γi is the anomalous dimension of the charged superfield Φi.

But what ifW (Φ) 6= 0 and there are some masses and/or Yukawa couplings? In this case,

many — if not all — of the Ji currents are no longer classically conserved. But the Konishi

anomalies remain exactly the same, they simply add up to the classical mis-conservations of

the currents,

1
4D

2
Ji =

q2i
16π2

WαWα + Φi ×
∂W

∂Φi
,

1
4D

2Ji =
q2i

16π2
W α̇W

α̇
+ Φi ×

∂W ∗

∂Φi

.

(73)

But under a chiral field redefinition (66), the Z
(r)
i factors transform exactly as in eq. (67),

while the Wilsonian holomorphic gauge coupling τ(M) transforms exactly as in eq. (69),

regardless of the superpotential W (Φ). (Although the superpotential couplings should

also transform to keep W ′(Φ′) = W (Φ).) Consequently, the Novikov–Shifman–Vainshtein–

Zaharov equations for the gauge coupling and its beta-function remain exactly as in (71)

and (72).
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Note: in presence of the superpotential Yukawa couplingsW ⊃ 1
6gijkΦiΦjΦk, the anoma-

lous dimensions γi depend both on the gauge coupling e and on the Yukawa couplings gijk.

But once we calculate all the anomalous dimensions to some n-loop order, we get the beta-

functions for both kinds of couplings:

β[gijk] = gijk ×
(
γi + γj + γk

)
(74)

to the n-loop order, and

β[e] =
e3

16π2

n∑

i=1

q2i ×
(
1− 2γi

)
(75)

to the (n + 1) loop order.

⋆ ⋆ ⋆

Next, consider the SQCD as an example of a non-abelian SUSY gauge theory. In matrix

notations, the vector superfield V is a traceless hermitian Nc ×Nc matrix, the quark super-

fields A and B are Nc ×Nf matrices, while the antiquark superfields A and B are Nf ×Nc

matrices, and the Lagrangian is

L =

∫
d2θ d2θ̄ Z(M,M)× tr

(
A exp(+2V )A + B exp(−2V )B

)

+

∫
d2θ

(
tr
(
m(M)BA

)
+
iτ(M)

8π
tr
(
WαWα

))
+ H. c.

(76)

where m is the Nf × Nf quark mass matrix. When m = 0, — which we assume through

the rest of this section — the Lagrangian (76) has a U(Nf )×U(Nf ) chiral symmetry; there

is also a U(1) R-symmetry, but let’s put that aside for a moment. Similar to the ordinary

QCD, the SU(Nf ) × SU(Nf ) × U(1)V flavor symmetries remain good symmetries of the

quantum theory, but the axial U(1)A is anomalous:

∂µj
5µ[U(1)A] =

Nf

16π2
tr
(
ǫFF

)
. (77)

The Fµν on the RHS here are complete non-abelian tension fields, so tr
(
ǫFF

)
includes both

2-photon and 3-photon terms. Supersymmetrizing the anomaly equation (77) we get the
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non-abelian Konishi anomaly,

Jax = Z × tr
(
A exp(+2V )A + B exp(−2V )B

)
, (78)

1
4D

2
Jax =

Nf

8π2
tr
(
WαWα

)
, (79)

1
4D

2Jax =
Nf

8π2
tr
(
W α̇W

α̇)
. (80)

In the superfield formulation, the right hand sides here comprise infinite series of n-vector

amplitudes for n = 2, 3, 4, . . ., so a direct superfield calculation of the anomalies (79) and (80)

involves an infinite series of non-trivial one-loop diagrams.
⋆
Fortunately, in the background

field formalism, the non-abelian anomaly calculation reduces to the same few triangle graphs

as in the abelian case. Alas, the background field method — and hence this calculation —

are to technical for this introductory SUSY class. The interested students are referred to

the Superspace book, §6.5–7.

For other flavor symmetries generated by

δA = iA×Qa , δB = iQb ×B (81)

for some Nf ×Nf matrices Qa and Qb, we have currents

J [Qa, Qb] = Z tr
(
Ae+2VA×Qa

)
+ Z tr

(
Qb × Be−2VB

)
(82)

whose color anomalies are proportional to

C[Qa, Qb] = tr(Qa) + tr(Qb) : (83)

1
4D

2
J [Qa, Qb] =

C[Qa, Qb]

16π2
tr
(
WαWα

)
, (84)

1
4D

2J [Qa, Qb] =
C[Qa, Qb]

16π2
tr
(
W α̇W

α̇)
. (85)

Indeed, all the traceless SU(Nf ) × SU(Nf ) flavor symmetry have C = 0, and the vector

U(1)V also has C = 0, so all these symmetries are anomaly free. On the other hand, the

axial U(1) symmetry has C = 2Nf , hence eqs. (79) and (80).

⋆ But only one-loop, since all the multi-loop diagrams may be regulated by covariant higher-derivative

terms for the vector superfields, and such CHD terms do not break the axial symmetry. But the one-

loop diagrams take another regulator such as Pauli–Villars, which does break the axial symmetry, and

that’s what causes the anomaly.
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⋆ ⋆ ⋆

Next, consider the SQCD beta-function. As we have learned last semester, at the one-

loop level the beta-function for a gauge coupling depends only on the spectrum of the field

multiplets WRT the gauge symmetry in question, but it does not depend on any other

interactions of those fields. Specifically,

β1 loop(g) = B ×
g3

16π2
(86)

for

B =
∑

all physical
multiplets

R(multiplet)×





−11
3 for the gauge fields,

+4
3 for Dirac fermions,

+2
3 for Majorana fermions,

+2
3 for chiral Weyl fermions,

+1
3 for complex scalar fields,

+1
6 for real scalar fields,

(87)

see my notes on QCD beta function for details. The R(multiplet) in eq. (87) is the multiplet’s

quadratic index: for any two gauge group generators T a and T b,

trmultiplet

(
T aT b

)
= δab ×R(multiplet). (88)

For a supersymmetric theory, eq. (87) works verbatim in terms of the component vector,

fermionic, or scalar fields, and the multiplets they form WRT the gauge group. In particular,

counting only the physical component fields of SQCD, we have the following multiplets:

• Adjoint multiplet of vector fields.

• Adjoint multiplet of Weyl gauginos.

• Nf fundamental multiplets of Dirac quarks.

• 2Nf fundamental multiplets of squarks (which are complex scalars).
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Altogether, their contributions to the one-loop beta-functions add up to

B = −11
3 × R(adjoint) + 2

3 ×R(adjoint)

+ 4
3 ×Nf × R(fundamental) + 1

3 × 2Nf ×R(fundamental)

= −3 ×R(adjoint) + 2×Nf ×R(fundamental).

(89)

For the SU(Nc) gauge group, the adjoint multiplet has index Nc while the fundamental

multiplet has index 1
2 , thus

B = −3Nc + Nf (90)

and therefore

β1 loop(g) =
g3

16π2
× (−3Nc +Nf ). (91)

Consequently, SQCD is asymptotically (UV limit) free only for Nf < 3Nc. On the other

hand, SQCD with Nf > 3Nc massless flavors becomes weakly coupled and almost free in the

deep IR limit of the RG flow. This regime of SQCD-like theories is called the non-abelian

Coulomb phase.

The higher-loop terms in SQCD beta-function obtain from the NSVZ equation. To

derive this equation, let’s start with the coupling of the moduli quanta δM and δM to the

CP-off combination tr(ǫFF) of two or three gluons. Just like in SQED, there are several

contribution to these amplitudes:

1. Tree-level coupling of Θ(M,M) = 2πRe τ(M) to the gluons,

(
δM or δM

)
× tr

(
ǫFF

)
amplitude1 =

1

32π

(
∂τ

∂M
or

∂τ∗

∂M

)

=
1

16π

(
i
∂

∂M
or − i

∂

∂M

)
1

αw(M,M)
.

(92)

2. Coupling of the axial U(1)A current of the quarks

J5µ = Z ×Ψγ5γµΨ 〈〈 summed over all colors and flavors 〉〉 (93)

to the gradients of the moduli field as

L ⊃ Lµ ×
1

Z
J5µ (94)
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for

Lµ = −
i

2

∂Z

∂M
× ∂µM +

i

2

∂Z

∂M
× ∂µM. (95)

Consequently,

δL = −
i

2Z

∂Z

∂M
∂δM × J5µ + H. c.

∼= +
i

2

∂ logZ

∂M
δM × ∂µJ

5µ + H. c.

〈〈 using axial anomaly of the current 〉〉

=
i

2

∂ logZ

∂M
δM ×

Nf

16π2
tr
(
ǫFF

)
+ H. c.,

(96)

hence anomalous couplings of moduli quanta to the gluons with amplitude

(
δM or δM

)
× tr

(
ǫFF

)
amplitude2 =

Nf

32π2

(
i
∂

∂M
or − i

∂

∂M

)
logZ(M,M). (97)

3. The chiral chirrent of the gluinos also couples to the moduli quanta via moduli depen-

dence of the Θ angle:

L ⊃
Θ(M,M)

16π2
× ∂µ tr

(
λ̄σ̄µλ

)

δL =
1

16π2

(
∂Θ

∂M
δM +

∂Θ

∂M
δM

)
× ∂µ tr

(
λ̄σ̄µλ

)
.

(98)

In SQED there is a similar coupling of moduli quanta to the divergence of the photino

current, but that current is not anomalous since the photinos are neutral. But in SQCD

the gluinos are in the adjoint multiplet, so its chiral current is anomalous. Indeed, for

any non-trivial multiplet (m) of LH Weyl fermions χαi without the corresponding RH

counterparts, the LH chiral current

jµL =
∑

i

χ̄iσ̄
µχi (99)

has gauge anomaly

∂µj
µ
L =

R(m)

8π2
tr
(
ǫFF

)
. (100)
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In particular, for the gluino current

∂µj
µ
L[gluinos] =

Nc

8π2
tr
(
ǫFF

)
. (101)

However, the gluinos λa,α in eq. (98) are non-canonically normalized,

L ⊃
1

g2
tr
(
iλ̄α̇σ̄

µ,α̇β
↔

Dµλβ

)
=

1

g2

∑

a

i
2 λ̄

a
α̇σ̄

µ,α̇β
↔

Dµλ
a
β , (102)

so their properly normalized chiral current — which obeys eq. (101) — is

jµL =
1

g2
×
∑

a

λ̄aσ̄µλa =
2

g2
× tr

(
λ̄σ̄µλ

)
. (103)

Consequently,

∂µ tr
(
λ̄σ̄µλ

)
=

Ncg
2

16π2
tr
(
ǫFF

)
, (104)

so eq. (98) becomes

δL =
Ncg

2(M,M)

256π4

(
∂Θ

∂M
δM +

∂Θ

∂M
δM

)
× tr

(
ǫFF

)
. (105)

Furthermore, at the one-loop level of accuracy we may use the tree-level couplings

g2 =
4π

Im τ(M)
, Θ = 2πRe τ(M) (106)

for a holomorphic function τ(M), hence

∂ Re τ

∂M
= i

∂ Im τ

∂M

⇐
=

g2 ×
∂Θ

∂M
=

8π2

Im τ

∂ Re τ

∂M
=

8π2i

Im τ

∂ Im τ

∂M
= 8π2i

∂ log(Im τ)

∂M

(107)

and likewise

g2 ×
∂Θ

∂M
= −8π2i

∂ log(Im τ)

∂M
. (108)

Plugging these formulae into eq. (105), we get the amplitudes

(
δM or δM

)
× tr

(
ǫFF

)
amplitude3 =

Nc

32π2

(
i
∂

∂M
or − i

∂

∂M

)
log

(
Im τ =

1

α

)
.

(109)
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4. Combining the tree amplitude (92) and the one-loop amplitudes (97) and (109), we

get the net amplitude connecting the moduli quanta to the CP-odd combinations of 2

or 3 gluons:

(
δM or δM

)
× tr

(
ǫFF

)
amplitude =

=
1

32π2

(
i
∂

∂M
or − i

∂

∂M

)[
2π

αw
+ Nf × logZ + Nc × log

1

αw

]
.

(110)

Similar to SQED, there are also higher-loop contributions which modify the couplings

of the anomalous quark and gluino currents to the moduli quanta. To account for

such effects, we should replace the bare Z(M,M) factor for the quarks with the renor-

malized factor Zr(M,M,E) where E is the energy scale of the amplitude. Likewise,

in the log(1/α) term — and only in that term — we should replace the Wilsonian

gauge coupling αw(M,M) with the running gauge coupling αr(M,M,E). With these

corrections, we get the all-loop amplitudes

net
(
δM or δM

)
× tr

(
ǫFF

)
amplitude =

=
1

32π2

(
i
∂

∂M
or − i

∂

∂M

)[
2π

αw
+ Nf × logZr + Nc × log

1

αr

]
.

(111)

Thus far, we have used the axial and chiral anomalies to calculate the amplitudes con-

necting moduli quanta to the CP-odd combinations of the gluons. The direct calculations

involving the CP-even combinations of the gluons would be much more difficult. Fortunately,

by to supersymmetry the CP-even amplitudes are simply equal to the CP-odd amplitudes,

up to overall factors ±i. (And also factor of 2 since (ǫFF) = 2FµνF̃
µν .) Thus, without any

further calculations, we immediately get the CP-even amplitudes as

net
(
δM or δM

)
× tr

(
F2
µν

)
amplitude =

= −
1

16π2

(
∂

∂M
or

∂

∂M

)[
2π

αw
+ Nf × logZr + Nc × log

1

αr

]
.

(112)

Next, we take the limit where the momentum q of the modulus quantum goes to zero
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while the gluon momenta remain off-shell at some energy scale E. In this limit,

net
(
δM or δM

)
× tr

(
F2
µν

)
amplitude

−−→
q→0

(
∂

∂M
or

∂

∂M

)(
tr
(
F2
µν

)
amplitude

)
(113)

where tr
(
F2
µν

)
amplitude = −

1

2g2r (M,M,E)
, (114)

the (inverse) renormalized gauge coupling at scale E. Comparing the last 3 equations, we

immediately see that

(
∂

∂M
or

∂

∂M

)
8π2

g2r
=

(
∂

∂M
or

∂

∂M

)[
2π

αw
+ Nf × logZr + Nc × log

1

αr

]
(115)

and therefore

8π2

g2r(M,M,E)
=

8π2

g2w(M,M)
+ Nf × logZr(M,M,E) + Nc log

4π

g2r (M,M,E)

+ a moduli-independent ‘constant’

(116)

On the bottom line here, the ‘constant’ is in quotes because it is actually a function of the

renormalization scale E, which for a massless theory means a function of the ratio of energy

scale E to the UV cutoff Λ. The Wilsonian gauge coupling gw is also cutoff-dependent, thus

8π2

g2r (M,M,E)
=

8π2

g2w(M,M,Λ)
+ F (E/Λ)

+ Nf × logZr(M,M,E) + Nc log
4π

g2r (M,M,E)
.

(117)

Finally, the LHS here is cutoff-independent, so the net RHS should also independent, and

since only the first two terms on the RHS depend on Λ, we need the

8π2

g2w(M,M,Λ)
+ F (E/Λ) (118)

combination.to be cutoff-independent. By holomorphy of τ(M), the Wilsonian beta-function
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for the gauge coupling is exact at one loop order, thus

βwg = (Nf − 3Nc)×
g3

16π2
, exactly, (119)

hence

∂

∂ log Λ

8π2

g2w
= (3Nc −Nf ), exactly, (120)

and therefore

8π2

g2w(Λ)
=

8π2

g2w(Λ0)
+ (3Nc −Nf ) log

Λ

Λ0
. (121)

Hence, to keep the combination (118) Λ-independent we need

F (E/Λ) = (Nf − 3Nc) log
Λ

E
+ numeric constant, (122)

and plugging this formula into eq. (117) we finally arrive at the NSVZ equation for SQCD:

8π2

g2r (M,M,E)
=

8π2

g2w(M,M,Λ0)
+ (Nf − 3Nc) log

Λ0

E
+ const

+ Nf × logZr(M,M,E) + Nc log
4π

g2r (M,M,E)
.

(123)

Or rather, this is the integral form of the NSVZ equation for the running gauge coupling

governing both its moduli dependence and energy scale dependence. To get the NSVZ

equation for the SQCD beta function, we focus on the energy dependence and take the

derivatives of both sides of eq. (123) WRT logE. Thus

−
16π2

g3r
×

dgr
d logE

= (3Nc −NF ) + Nf ×
d logZr

d logE
−

2Nc

gr
×

dgr
d logE

(124)

and hence

−
16π2

g3
× β(g) = (3Nc −Nf ) + Nf × 2γ(g) −

2Nc

g
× β(g) (125)

where γ is the anomalous dimension of the quarks and squarks. Finally, solving this equation

for the beta-function, we arrive at the NSVZ equation for the SQCD beta-function:

β(g) =
g3

16π2 − 2Ncg2
×
[
−3Nc + Nf

(
1− 2γ(e)

)]
, exactly. (126)
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⋆ ⋆ ⋆

Finally, let me write down the NSVZ equations for completely general SUSY gauge

theories. Let’s allow for a completely general gauge group G, simple or a product

G = G1 ⊗G2 ⊗ · · · (127)

with the corresponding gauge couplings g1, g2, . . .. Likewise, let the chiral superfields Φi form

any multiplets (m1), (m2), . . . of G, as long as all such multiplets are complete and all the

gauge3 anomalies cancel out,

∑

(m)

tr(m)

(
ta{tb, tc}

)
= 0 for any 3 generators ta, tb, tc of G. (128)

For the abelian factors of G — if any — the trace anomalies should also vanish.

Besides the gauge couplings, the theory may have a superpotential W (Φ) with any

Yukawa couplings we like, as long as W (Φ) is gauge invariant.

With these assumptions, the one-loop beta function for the coupling ga of the gauge

group gactor Ga is simply

β1 loopa = Ba ×
g3a

16π2
(129)

regardless of any other gauge or Yukawa coupling, where

Ba = −3R[Ga](adj) +
∑

(m)

R[Ga](m), (130)

with R[Ga](multiplet) denoting the Index of that multiplet WRT Ga group.

For the Wilsonian gauge couplins, the one-loop beta-functions (129) are exact, but for the

physical running gauge couplings there are higher-loop corrections related to the anomalous

dimensions of the chiral superfields. Specifically,

βa =
g3

16π2 − 2R[Ga](adj)g2
×


−3R[Ga](adj) +

∑

(m)

R[Ga](m)×
(
1− 2γ[(m)]

)

 (131)

where γ[(m)] is the anomalous dimensions of the fields in multiplet (m). Note: same γ for

all scalar and fermionic components of every chiral superfield in the multiplet. Also note
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that such anomalous dimensions generally depend on all gauge and Yukawa couplings of

the theory, so at the two-loop and higher levels, the beta-function for a gauge coupling ga

depends not only on the ga but also on all the other couplings.

Finally, the moduli dependence of any Wilsonian guage coupling is a harmonic function

4π

(gwa )
2(M,M)

= Im τa(M), (132)

but the moduli dependence of the physical gauge couplings is generally non-harmonic. In-

stead,

8π2

(gra)(M,M,E)
= 2π Im τ(M,Λ) + B × log

Λ

E

+ R[Ga](adj)× log
1

(gar )(M,M,E)

+
∑

(m)

R[Ga](m)× logZr
(m)(M,M,E).

(133)
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