Conformal and Superconformal Symmetries

The conformal symmetry group is generated by the following operators:

1. The momenta P* = i0" generate spacetime translations,

exp(ia, P*) X exp(—ia,P") = X* —a’. 1
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2. The angular momenta J* = XtPY — XV PH + SH generate rotations of space and

Lorentz boosts,

exp(%TWJW)X/\ exp(—%ruyJ“”) = [/\po, L*, = exp(r,) € SOT(1,3). (2)

3. The dilatation operator D = X* P, + Diytrinsic generates uniform rescaling

exp(icD) X exp(—icD) = e °X*, exp(icD)®(X) exp(—icD) = € x ®(e°X).
(3)

4. Finally, the special conformal operators K#* = —2X* D+ X2PH 425" X, generate the

“inverted translations” (translations of the inverted spacetime coordinates X*/X?),

X)\ o (XQ)O{/\
1 —2(a, X¥)+a?X?’

exp(ia, K" X exp(—ia, K") =
X i (@)
X X
i.e., exp(ia,K") (ﬁ) exp(—ia, K") = (ﬁ) — o

Note: The sign conventions I used above are for the Minkowski spacetime with signature
(+———). In the Euclidean space, some signs are different, for example P* = —io" (instead

of PH = +i0").



The commutator algebra of the conformal generators includes the usual Poincaré algebra

for the Lorentz and translation generators

[, JP7) = i(s[[ﬁ JJ]T], s PY] = i}, Py [P*,P"] = 0. (5)

We also have

[ K] = 6}, Ky, [Juw D] =0 (6)
because K is a 4-vector while D is a 4-scalar,
[D,P\ = —iP*,  [D,K = +iK* (7)

because the momenta have scaling dimension +1 while the special conformal generators K#

have dimension —1, and finally

(KM KY) =0, [KF,P'] = 2ig""D + 2iJ". (8)

The Lie algebra of the commutation relations (5)—(8) is SO(2,4), a Lorentz-like symme-
try of four space and two time coordinates. To see how this works, let’s define J% = — jb@

for a,b = —1,0,...,4 according to

the usual J* for u,v =10,1,2,3,

J4’u _ _JNA _ PM+K}.L
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Jht =~y = D,

In terms of J the commutators (5)—(8) become
[Jab’ ch] _ —igbcjad . ,L'gaCde . igbdjac + igadjbc (10)
provided we extend the metric matrix from 4 to 6 dimensions according to

4.4 1,1

diagonal g~ = g% = 41, M =g =y

off-diagonal g% = 0 for a # b. (11)

In other words, the J%* algebra is the Lorentz-like algebra SO(2,4) in a “spacetime” of



dimension d = 2 4 4: two times and 4 space dimensions. Or if you don’t like multiple
time dimensions, it’s the symmetry algebra of the anti-de-Sitter space with one time and 4
space dimensions, which can be embedded into the 2+ 4 dimensional space as a hypersurface
gap XX = R%.

More generally, the conformal symmetry group in the Minkowski spacetime with d — 1
space dimensions and one time dimension is SO(2,d). The anti-de-Sitter space with one
time-like and d spacelike dimensions has the same symmetry, which facilitates the AdS/CFT
correspondence. (Many conformal field theories are dual to supergravity theories on AdS

spaces of one more dimension than the gauge theory.)

In the d-dimensional Euclidean space, the conformal symmetry group is SO™(d + 1, 1).
For example, in 2 Euclidean dimensions, the conformal symmetry group is SO*(3,1), which
is isomorphic to the Lorentz symmetry group in 4D. The simplest way to see that is in terms

of the spin group Spin(3,1) = SL(2,C) — the group of 2 x 2 complex matrices

a b
( > : ad — be = 1. (12)
c d

Each such matrix defines a fractional linear function

az+b
2 = o d (13)

which is a conformal map of the complex sphere C* onto itself. Conversely, all one-to-one
conformal maps of the complex sphere are meromorphic functions with a single pole, so
they have to have form (13) for some SL(2,C) matrix (12) and hence correspond to some

SO*(3,1) Lorentz transform.

In two dimensions, one can define a much bigger conformal symmetry by including
the higher-order meromorphic functions, which are conformal but not one-to one. The

infinitesimal transformations of this bigger symmetry have form

+o0o
07 = > anZ" 4+ 0(a?), (14)

and the corresponding generators L,, satisfy the Virasoro algebra. Any textbook on string

theory will describe this algebra in painful detail.



Now consider the supersymmetric conformal theories. Any theory that has both the
conformal symmetry and the ordinary supersymmetries Q% and @a must also have the

special conformal supersymmetries

&

So = —iK5@) 5 = —4KY,Q) (15)

The supercharges form spinor multiplets of the conformal symmetry group Spin(2,4), which
is isomorphic to SU(2,2) — a non-compact cousin of the SU(4), made of complex matrices

with det = 1 preserving an hermitian metric of signature (+ + ——). In SU(2,2) terms,
Qa , —A —a -
Fy = <0 comprise 4, F = (Q ,Sa> comprise 4, (16)

while the generators of the conformal symmetry comprise a hermitian traceless 4 x 4 matrix
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JAB — ( 2 . aﬁ ) 3 JAA — 0 (].7)
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The commutators between these generators and the supercharges (16) follow from the

SU(2,2) algebra,

I8 Fo] = i0BFy — 168F.,  [1EF] = —io§F" + i6BFC. (18)



In 4D terms, these commutators become

[J",Qa] = §(0"5") Qs

[, 8a] = $(0"5")JSs,
Q) = Sare) i@,
7,5 = (aet)S (19)
[D>Qo¢] = _%Qaa

[Daéa] = _%‘_O‘7

[D,Sa) = +%5a,

[D,5] = +i5%, (20)

[P*.Qa) = [P, Q"] = 0,
(K", S,] = [K", 5% = o, (21)

[KM7Q04] = ZUZ?B’
(K" QY = ighisy,
(P!, S0) = io"Q",
[P, 5% = io"*PQy (22)

In particular, egs. (20) tell us that the ordinary supercharges @, and @, have scaling di-

mension —1—% while the special conformal supercharges S, and Sy have scaling dimension —%.

The ordinary SUSY algebra includes the anticommutation relations

{Qa, Qs} = {Qa: @t = 0. {Qu.Qz} = 2P,4. (23)
Applying SU(2,2) symmetries to both sides of these relations, we promote them to
—A —B
{FAaFB} = {F 7F } = 07 (24)
(FA,F°) = 208 + 6B x 2z, (25)



where Z is some kind of a central charge — a bosonic operator which commutes with the

whole conformal algebra SO(2,4) but does not commute with the supercharges F)4 and .

To work out the commutator [Z, F4], let’s use the Jacobi identity
{F0F ) Fo) + (Ao C) = [F° {Fa,Fo}] = 0. (26)
On the left hand side here,
{FaF ) Fo) = [(208 +052), Fo) = 2i0BFs — 168F0 + 68(2,Fo). (27)
hence

0 = 2i08Fs— $65 Fo+ 052, Fo) + (A« C) = 65 (3iFc + (2, Fo)) + 68 (3iFa + [Z, Fa))

(28)
and therefore
[Z,Fa] = —3iFa. (29)
Similarly,
2 FY = +3F" (30)

Physically, egs. (29) and (30) mean the supercharges @, and 5% have central charges

Z = ~|—% while the supercharges @d and S, have central charges 7 = —%. In other words,
Z = 3R (31)

and the central charge generates the R—symmetry of a superconformal theory. Note that in
non-conformal supersymmetric theories, the R—-symmetry is optional: in some theories, the
interactions respect the R-symmetry, in other theories they don’t. However, in the conformal
supersymmetric theories, the R—charge is a part of the superconformal algebra, without it
the algebra would not close. So if a theory has both SUSY and conformal symmetry, it must

also have an R—symmetry. It does not have to be a pure-R symmetry under which all scalar



are neutral. Instead, it could be an anomaly-free combination of the pure-R symmetry and
the axial symmetry of a SQCD-like theory, or with some other global symmetry of a more
general theory. Generically, the R-charge of the superconformal algebra generates a global

U(1) symmetry which gives different phases to bosons and fermions,

L 0 N 1 S DN €:)

In an exactly superconformal theory, this R-symmetry must be exact. But suppose
a supersymmetric theory is not conformal at high energies, although at low energies the
RG flows to a non-trivial fixed point. In the deep IR, all the irrelevant operators become
negligible, so the effective theory without them becomes conformally invariant end hence
superconformal. The effective IR theory must have an exact R-symmetry, but we have more
options at higher energies: The UV theory may have R-symmetry-breaking interactions, as

long as all such interactions become irrelevant in the deep IR limit.

For the future reference, let me spell out the anticommutation relations (24) and (25) in

conventional 4D notations:

(Qa.Qs) = {Qa,5") = 595"} = o, 33

(33)

{Qa, @5} = {5%.Q5) = {5*.5"} =0, (34)
{Qa: Q) =2PF,4, (35)
{5%, 8%} =2K%, (36)
(37)

(38)

34
35

{Qa, 5%} = (0"a") P x T + 2 x (3R + D).
{gﬁa@a} = (5NUV)Ba X Ju + 52 x (

37
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R - D).

* * *

. —A
The superconformal symmetries generated by the J AB , R, Fs,and F" form a super-group

called PSU (2, 2 ‘ 1). Mathematically, it’s a group of pseudo-unitary matrices

—B
exp WE (39)
Fy 3R

transforming four complex bosons (two timelike and two spacelike) and one complex fermion



into each other. The bosonic part of this super-group is SU(2, 2)conformal X U(1) g while the

fermionic part is SUSY (ordinary plus conformal).

When an extended N = 2 or N' = 4 supersymmetry is combined with conformal in-
variance (automatic for the N' = 4 SYM theories), we get a larger superconformal group

PSU (2, 2 ‘ N ) This time we have pseudounitary matrices

—B
JP F;
exp Al, 5 Zi (40)

acting on 4 complex bosons and N complex fermions. The bosonic part of this symmetry is
a direct product of the conformal SU(2,2) symmetry and the extended R-symmetry U(N)g
while the fermionic part comprises N ordinary supersymmetries N’ conformal supersym-
metries. The fermionic anticommutation relations of the extended superconformal algebra

are

(Fi,Fiy =0, {FLF;} =0, {F,Fi} =0dxJ8 +368xR,. (4



