
GAUGINO CONDENSATION IN SYM AND IN SQCD

Super Yang–Mills Theories

As a warm-up exercise, consider the ordinary QCD with a few light flavors. This theory

has uniformly negative β(g), hence asymptotic freedom in the UV limit. On the other hand,

at lower energies the running coupling gets stronger until at E ∼ ΛQCD g(E) becomes singu-

lar. Physically, this leads to a complete re-arrangement of the low-energy degrees of freedom:

The quarks and the gluons becomes confined, while the free particle spectrum is comprised

of the color-singlet composite particles — the mesons, the baryons, and the glueballs. Also,

the strong quark-antiquark attraction leads to the Bose–Einstein condensation of qq̄ bound

states and hence spontaneous breaking of the chiral symmetry

SU(Nf )L × SU(Nf )R → SU(Nf )V . (1)

In LH Weyl fermion notations — where ψα,i
f denotes the LH quarks and ψ̃α,i,f the LH

antiquarks — condensate VEV is

Mf,f ′

def
=
〈

ψα,i
f ψ̃α,i,f ′

〉

= δf,f ′ ×M 6= 0, (2)

hence χSB as in eq. (1).

Now consider an N = 1 SYM theory for some simple gauge group G such as SU(N).

In components, this is a gauge theory with Majorana fermions in the adjoint multiplet but

no other fermions and no scalar fields at all. So its behavior strongly resembles that of the

ordinary QCD with Nf = Nc: no couplings other than the gauge coupling with β(g) < 0,

hence asymptotic freedom in the UV limit but stronger coupling at lower energies until at

E ∼ ΛSYM (the analogue of ΛQCD) the coupling blows up. Consequently, the elementary

quanta of the theory — the gluons and the gluinos
⋆
— become confined, while the free

particle spectrum is comprised of the color-singlet glueballs and oddballs. Also, the gluinos

— being in a real representation of the gauge group — strongly attract each other, so their

⋆ For simplicity, I use SQCD terminology: gluons for the gauge field quanta and gluinos for their super-

partners. More generally, such superpartners are called gauginos, but what the heck. . .
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bound pairs form a Bose–Einstein condensate

S = 〈λα,aλaα〉 6= 0 (3)

similar to the quark-antiquark condensate (2) in the ordinary QCD. Strictly speaking, the

condensate (3) should be called the ‘gluino-bilinear condensate’ or ‘gaugino-bilinear conden-

sate’, but everybody calls it simply the ‘gaugino condensate’.

Now consider the chiral symmetry and its spontaneous breakdown in the SYM theory.

Classically, the SYM theory has a U(1) chiral symmetry: In Weyl fermion notations, it acts

as

Aa
µ(x) → itself, λaα(x) → e+iρ × λaα(x), λ̄aα̇(x) → e−iρ × λ̄aα̇(x) (4)

for an arbitrary global phase ρ. From the supersymmetry point of view this chiral symmetry

is an R-symmetry — it does not commute with the supercharges but instead rotates their

phases as

Qα → e−iρ ×Qα , Qα̇ → e+iρ ×Qα̇ , (5)

but from the component-field theory’s point of view it’s just a global U(1).

In the quantum SYM theory, the classical U(1) chiral symmetry is anomalous, although

we may cancel the anomaly by adjusting the theory’s instanton angle Θ as

Θ → Θ + 2N × ρ. (6)

(The N here is the index of the adjoint multiplet of the gauge group G; for G = SU(N) this

index is N , hence the notation.) However, the instanton angle Θ appears in the functional

integral of the theory only as the phase eiΘ, so a Θ′ = Θ+ 2π × integer is indistinguishable

from Θ. In other words, the instanton angle Θ is only defined modulo 2π. Consequently, for

ρ =
2π

2N
× integer (7)

the chiral symmetry works without changing the Θ angle, and that makes it non-anomalous.

Thus, while the continuous U(1) chiral symmetry is anomalous, its discrete subgroup Z2N

is anomaly-free.
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Now consider the gaugino condensate (3). Under the chiral symmetry, it transforms as

S → e2iρ × S, (8)

which is invariant for ρ = 0, π but no other values of ρ. Consequently, the gaugino condensate

spontaneously breaks the discrete Z2N chiral symmetry down to its Z2 subgroup. As usual for

spontaneously broken symmetries, the factor group Z2N/Z2 = ZN relates distinct vacuum

states of the theory to each other. Specifically, there N vacuum states — in perfect agreement

with the Witten index of the SYM being I = +N — distinguished by the phases of the

gaugino condensate:

phase(S in vacuum#j) = common +
2πj

N
. (9)

Moreover, the common term here is related to the instanton angle Θ. Indeed, using a chiral

field redefinition

(λaα)
′ = eiρ × λaα =⇒ S′ = e2iρ × S while Θ′ = Θ + 2Nρ (10)

we may always set Θ′ = 0, which makes the redefined SYM theory CP-invariant. Conse-

quently, it should have a vacuum state with a real value of the condensate S ′, hence the

other vacua have

phase(S ′[vacj ]) = 0 +
2πj

N
. (11)

In terms of the condensate phases before the field redefinition, this means

phase(S[vacj ]) =
Θ

N
+

2πj

N
. (12)

Now consider the magnitude of the gaugino condensate. By dimensional analysis, we

should have

|〈λλ〉| = Λ3
SYM ×

(

a numeric

constant

)

(13)

where ΛSYM is the energy scale E where the running gauge coupling g(E) becomes sin-

gular, or rather where the RG flow to the IR hits a singularity. Let’s relate this scale to
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the Wilsonian gauge coupling τ for some UV cutoff scale ΛUV. The Novikov–Shifman–

Vainshtein–Zaharov equation for the physical gauge coupling of the SYM theory can be

written as

8π2

g2(E)
− N × log

1

g2(E)
= 2π Im τ(ΛUV) − 3N × log

ΛUV

E
+

(

a numeric

constant

)

. (14)

As a function of energy, the RHS here is +3N logE + const, so it monotonically decreases

with the RG flow from UV to IR. On the other hand, the LHS of eq. (14) is a non-monotonic

function of g: it decreases with g for a weak coupling, but then hits a minimum and starts

increasing:

g

LHS

minimum

(15)

The minimum happens for Ng2 = 8π2, which is the point where the NSVZ beta-function

β(g) =
−3Ncg

3

16π2 − 2Ng2
(16)

blows up. In terms of eq. (14), this minimum on the LHS translates on the RHS to

2π Im τ(ΛUV) − 3N × log
ΛUV

E
≥
(

a numeric

constant

)

(17)

and hence

E ≥ ΛSYM for ΛSYM = ΛUV × exp

(

− 2π

3N
Im τ(ΛUV)

)

×
(

a numeric

factor

)

. (18)

So (up to an O(1) numerical factor I don’t care about), the strong-interaction scale of SYM

obtains from simple exponentiation of the Wilsonian gauge coupling Im τ = 1/αw. In other
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words, we simply use the Wilsonian beta-function — which is exact at one loop — to find

the scale at which the Wilsonian (1/αw)(ΛSYM ) crosses zero:

log Λ

1/αw

ΛSYM

(19)

In terms of the gaugino condensate’s magnitude, eq. (18) means

|〈λλ〉| = Λ3
UV × exp

(

−2π

N
Im τ(Λ)

)

×
(

a numeric

factor

)

. (20)

At the same time, we have eq. (12) for the gaugino condensate phase; in terms of the complex

gauge coupling τ , it becomes

phase(〈λλ〉) =
2π

N
× Re τ +

2π

N
× integer. (21)

Clearly, we may combine the last two formulae into a holomorphic formula

〈λλ〉 = Λ3
UV × exp

(

2πi

N
× τ(ΛUV)

)

×
(

numeric

factor

)

× N
√
1, (22)

where N
√
1 stands for any N th root of unity, different root for a different SUSY vacuum of

the SYM theory. Eq. (22) indicates holomorphic dimensional transmutation, in which we

trade a dimensionless holomorphic parameter τ specified for a particular cutoff scale ΛUV

for a dimensionful holomorphic parameter

Λ3N
SYM

def
= Λ3N

UV × exp
(

2πiτ(ΛUV)
)

(23)

that is independent of the UV cutoff. By holomorphic parameters, I mean that in a SYM

theory coupled to a chiral modulus superfield Φ, τ(Φ) should be a holomorphic function,
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and consequently ΛSYM is also a holomorphic function of the modulus Φ because it’s a holo-

morphic function of τ . Anyway, in terms of the holomorphic ΛSYM, the gaugino condensate

is simply

〈λλ〉 = Λ3
SYM ×

(

numeric

factor

)

× N
√
1. (24)

Note: in the holomorphic formulae (22) or (24) for the gaugino condensate 〈λλ〉, the
gaugino fields are non-canonically normalized. Instead, they are normalized as superpartners

of the gauge fields Aa
µ in covariant derivatives ∇µ = ∂µ + iAa

µt
a. Or in superfield terms, we

normalize

λα = λaαt
a = lowest component of Wα = −1

8D
2(
e−2VDαe

+2V
)

. (25)

Consequently, the gaugino bilinear tr(λαλα) is the lowest component of the gauge-invariant

chiral superfield

S = tr
(

WαWα

)

. (26)

A general rule for all supersymmetric vacua says that a non-zero VEV of a component field

must belong to the lowest component of a gauge-invariant superfield that is not a total D,

D, or ∂ derivatives of another gauge-invariant superfield. The S superfield from eq. (26) is

a total D derivative — because the Wα tension is itself a total D derivative, — but it is

not a total derivative of anything gauge-invariant. Consequently, the lowest component of S

may have a non-zero VEV in a supersymmetric vacuum and that’s how we get the gaugino

condensate 〈tr(λλ)〉 = 〈S〉 6= 0.

Another general rule says that the a VEV of the lowest components of a chiral super-

field such as S must be holomorphic functions of the gauge coupling τ or its dimensional

transmutant ΛSYM, and indeed eqs. (22) and (24) are manifestly holomorphic. But again,

these holomorphic formulae apply to the non-canonically normalized gaugino condensate.

The canonically normalized condensate is

〈

tr
(

λcanλcan
)〉

= g2 × 〈S〉 = g2 × Λ3
SYM ×

(

numeric

factor

)

× N
√
1 (27)

where g2 is the physical gauge coupling2 at the ΛSYM scale, and that g2 factor may be a

non-holomorphic function of the parameters.
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Veneziano–Yankielowicz Superpotential

Consider small fluctuations

δS(y, θ) = S(y, θ) − 〈S〉 (28)

of the gaugino bilinear around a SUSY vacuum of the SYM theory. Since the spontaneously

broken continuous U(1) R-symmetry is anomalous, δS is not a Goldstone mode of the SYM,

so we do not expect the quanta of δS to be massless. However, by analogy with the η-mesons

in real-life QCD we expect those quanta to be light relative to the other massive glueballs

or oddball particles.

Indeed, the pions and the eta-mesons are pseudo-Goldstone bosons of the spontaneous

breaking of the approximate U(2)L × U(2)R symmetry down to U(2)V . But the explicit

breaking of the SU(2)L × SU(2)R symmetry by the u, d quark masses is weaker that the

explicit breaking of the U(1)A symmetry by the axial anomaly, and that’s why the pions are

much lighter than the eta meson. However, the eta-meson itself is significantly lighter that

the rho meson or other non-pseudo-Goldstone bosons, so it makes sense to include it into an

effective low-energy theory for the light particles.

Similarly, the δS superfield in SYM is not a true Goldstone mode, but it’s a pseudo-

Goldstone mode of an approximate symmetry (where the approximation is neglecting the

anomaly), so we expect its quanta to be significantly lighter than all the other massive

particles of the theory. Consequently, it makes sense to write down the effective low-energy

theory for just the S superfield, and back in 1982 Gabriele Veneziano and Shimon Yankielow-

icz wrote an analytic formula for the exact non-perturbative superpotential W (S) for this

effective theory. But could only guess the general shape of the effective theory’s Kḧler

function K(S, S); alas, the non-holomorphic non-perturbative effects cannot be calculated

exactly.

In a moment I shall derive the Veneziano–Yankielowicz superpotential, albeit in a dif-

ferent way from how Veneziano and Yankielowicz did it. First, I shall couple the SYM

to a chiral modulus superfield Φ via modulus-dependent gauge coupling τ(Φ). Second, I

shall completely integrate out the SYM and look at the effective ultra-low-energy theory for

just the modulus Φ. Specifically, I shall derive the effective superpotential Weff(Φ) for the
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modulus generated by the gaugino condensation in the SYM sector. Third, I shall look at

non-so-low energies and ‘integrate in’ the S superfield into an effective theory for S and Φ.

And only then I shall drop the modulus and focus on the effective superpotential for just

the gaugino condensate S.

So let’s start with the SYM Lagrangian with a modulus-dependent gauge coupling,

L =
i

8π

∫

d2θ τ(Φ)× tr
(

WαWα

)

+ H. c. (29)

Among other things, this Lagrangian includes the coupling of the modulus’s auxiliary com-

ponent FΦ to the gaugino bilinear,

L ⊃ i

8π

∂τ

∂Φ
FΦ × tr(λαλα) + H. c., (30)

so gaugino condensation gives rise to the F-term for the modulus,

L ⊃ i

8π

∂τ

∂Φ
FΦ × 〈S〉 + H. c. (31)

By itself, such F-term may break SUSY in the modulus sector, but we assume the modulus

also couples to something else (besides the SYM) which may cancel this F-term.

Now, let’s completely integrate out the SYM theory and consider an effective ultra-low-

energy theory just for the modulus superfield Φ. In terms of that effective theory, the F-term

for Φ obtains from an effective superpotential Weff(Φ),

L ⊃ FΦ × ∂Weff

∂Φ
+ H. c., (32)

so to match the F-term (31) we should have

∂Weff

∂Φ
=

i

8π

∂τ

∂Φ
× 〈S〉 . (33)

Moreover, the gaugino condensate 〈S〉 here depends on the modulus itself via the gauge
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coupling τ(Φ),

〈S〉 = Λ3
UV × exp

(

2πi

N
τ(Φ,ΛUV)

)

. (34)

(Up to an overall numeric factor I do not care about.) Consequently,

∂Weff

∂Φ
=

iΛ3
UV

8π
× exp

(

2πi

N
τ(Φ,ΛUV)

)

× ∂τ

∂Φ
, (35)

and therefore

Weff(Φ) =
NΛ3

UV

16π2
× exp

(

2πi

N
τ(Φ,ΛUV)

)

. (36)

Or in terms of the holomorphic ΛSYM(Φ),

Weff(Φ) =
N

16π2
× Λ3

SYM(Φ). (37)

Now consider the effective theory at low but not too-low energies, so it includes both the

modulus Φ and the lightest composite superfield S of the SYM theory. The superpotential

W (S,Φ) of this EFT obtains by ‘integrating in’ the S superfield into the superpotential (37)

just for the Φ. The integration-in works by reversal of the integration-out procedure: We

assume a W (S,Φ), integrate out the S, and then try to match the result to eq. (37). As

to the integration-out, we first treat W (S,Φ) as the superpotential for just the S but with

modulus-dependent couplings and look for a SUSY vacuum with FS = 0. That is, we

solve the
∂W (S,Φ)

∂S
= 0 equation for S =⇒ solution 〈S〉 (Φ). (38)

Then we plug the solution 〈S〉 back into W (S,Φ), and this gives the effective superpotential

for the modulus,

Weff(Φ) = W (〈S〉 (Φ),Φ). (39)

Thus, in light of eq. (37), the W (S,Φ) should obey

for S(Φ) such that
∂W (S,Φ)

∂S
= 0 : W (S(Φ),Φ) =

N

16π2
Λ3
SYM(Φ). (40)

Furthermore, the VEV 〈S〉 is the gaugino condensate in the full SYM theory, and in that

theory we already know 〈S〉 = Λ3
SYM(Φ). Combining this knowledge with eqs. (38) and (40),
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we arrive at

for S = Λ3
SYM(Φ) : W (S,Φ) =

N

16π2
Λ3
SYM(Φ) and

∂W (S,Φ)

∂S
= 0. (41)

By themselves, these conditions do not completely determine the superpotential S(S,Φ), so

let’s bring in additional arguments.

Gabriele Veneziano and Shimon Yankielowicz themselves use the following heuristic ar-

gument: From the S field point of view, the SYM Lagrangian can be thought of as a tree-level

superpotential

Wtree(S,Φ) =
iτ(Φ)

8π
× S. (42)

There are no loop corrections to this effective superpotential, but there should be non-

perturbative contributions. Since such non-perturbative effects should come from the low-

energy effects in the SYM, they should depend on the condensate itself rather than on the

UV gauge coupling τ(Φ), so we expect Wn.p.(S only) and hence

W (S,Φ) = Wtree + Wn.p. =
iτ(Φ)

8π
× S + Wn.p.(S only)

=
N

16π2
log Λ3

SYM × S + Wn.p.(S only).

(43)

This general form for the superpotential W (S,Φ) is somewhat of a guesswork, but let’s plug

it into eqs. (41) anyway:

for S = Λ3
SYM :











N

16π2
log Λ3

SYM × S + Wn.p.(S) =
N

16π2
× Λ3

SYM ,

N

16π2
log Λ3

SYM +
dWn.p.

dS
= 0.

(44)

These equations have a unique solution for the non-perturbative term

Wn.p.(S) =
N

16π2
S ×

(

1− log S
)

, (45)

hence

W (S,Φ) =
N

16π2
× S ×

(

1 − log
S

Λ3
SYM(Φ)

)

. (46)

A more rigorous way to find this superpotential involves combining eqs. (41) with holo-

morphy, symmetry, and asymptotic constraints. Let’s start with the anomalous R-symmetry,
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under which we should have

S′ = e2iρ × S, Λ′3
SYM → e2iρ × Λ3

SYM , W (S′,Λ′3
SYM) = e2iρ ×W (S,Λ3

SYM). (47)

This symmetry requires

W (S,Λ3
SYM) = S × f(S/Λ3

SYM) (48)

where f(x) is some holomorphic function of a single argument x = S/Λ3
SYM. In terms of this

function, eqs. (41) become

f(1) = −f ′(1) =
N

16π2
. (49)

Finally, the effective theory should not have spurious SUSY vacua, so the derivative ∂W/∂S

should not vanish for |S| 6= |Λ3
SYM|. In terms of f(x) this means f(x)+f ′(x) 6= 0 for |x| 6= 1,

and in particular for |x| > 1. For a complex analytic function f(x), it means at large x it

should not grow faster than O(log x), and with this constraint there is only one solution to

eqs. (49):

f(x) =
N

16π2
×
(

1− log x
)

, (50)

hence the Veneziano–Yankielowicz superpotential

W (S,Φ) =
N

16π2
× S ×

(

1 − log
S

Λ3
SYM(Φ)

)

. (46)

Note: holomorphic dimension transmutation of the Wilsonian τ coupling produces a

single-valued Λ3N
SYM parameter, but the Λ3

SYM in the Veneziano–Yankielowicz superpoten-

tial (46) has N different values for N distinct SUSY vacua of the SYM. Thus, there is

no single Veneziano–Yankielowicz superpotential for all N vacua of SYM but N different

superpotentials, one for each vacuum. Sometimes it’s convenient to write a common formula

W (S) = − 1

16π2
S ×

(

log
SN

Λ3N
SYM

− N

)

(51)

which seems to cover all N vacua, but the devil is in the detail: Each vacuum state cor-

responds to a different branch of the log function, so the superpotential (51) isn’t really
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common to all the SUSY vacua of the SYM theory. Physically, this means that if we try

to interpolate between the different vacua — say, but putting a domain wall with different

vacua on its two sides, — then somewhere in the middle of that wall we would get extra

degrees of freedom that cannot be accounted just by the S superfield. But alas, such domain

walls are beyond the scope of this class.

SQCD with 1 Massive Flavor

Let’s move on from a pure SYM theory to SQCD with N colors and 1 massive flavor.

This theory has two holomorphic parameters — the quark mass m and the gauge coupling

τ , or equivalently, its dimensional transmutant

Λ3N−1
SQCD = Λ3N−1

UV × exp
(

2πiτ
)

. (52)

Note the (3N−1) power of Λ on both sides of this formula because the one-loop beta-function

coefficient of the 1-flavor SQCD is −B1 = 3Nc −Nf = 3N − 1.

The theory also has two independent VEVs of composite gauge-invariant chiral operators,

namely the gaugino condensate 〈S〉 = 〈tr(λλ)〉 and the squark-antisquark bilinear 〈M〉 =
〈

AiBi

〉

. By analogy with the ordinary QCD, the chiral superfield M is called the meson,

but the analogy is misleading because its made of two scalars rather than two fermions, so in

the Higgs regime of SQCD 〈M〉 is dominated by the semiclassical squark VEV rather than

quantum squark-antisquark pairing.

As long as we define S and M as non-canonically normalized but chiral operators, their

expectation values should be holomorphic functions ofm and ΛSQCD, and we shall derive such

holomorphic functions in this section. Moreover, we shall see that despite rather different

regimes of the theory for m≫ Λ and m≪ Λ, we end up with exactly the same holomorphic

functions S(m,Λ) and M(m,Λ) for both regimes. This indicates that SQCD with 1 massive

has only one phase and there are no phase transitions at finite m.

Heavy Quark Limit

Let’s start with the high quark mass limit m≫ ΛSQCD. In this regime, the heavy quark

decouples from the physics at energies E ≪ m, so the effective theory of those energies is
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the SYM without any quarks. The ΛSYM parameter of that effective theory obtains from

the RG flow which has a threshold at the quark mass M :

logE

8π2/g2

ΛSQCD ΛSYM M

slo
pe

=
3N

− 1

slo
pe
=
3N

(53)

The straight lines on this picture correspond to the one-loop approximation. To work at

all-loop precision, let’s use the NSVZ equations: At high energies above the threshold

8π2

g2(E)
− N log

1

g2(E)
= (3N − 1)× log

E

|ΛSQCD|
− logZ(E) (54)

where Z(E) is the running quark field normalization factor, while at low energies below the

threshold

8π2

g2(E)
− N log

1

g2(E)
= 3N × log

E

|ΛSYM| . (55)

Both equations should yield the same running gauge coupling g2(E) at the threshold E =M ,

which is the physical mass of the quark. In terms of the holomorphic mass m,

M =
|m|

Z(E =M)
. (56)

Thus, comparing eq. (54) and (55) at E =M , we immediately get

(3N − 1)× log
M

|ΛSQCD|
− logZ(E) = 3N × log

M

|ΛSYM| (57)
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and hence

|ΛSYM|3N =
∣

∣ΛSQCD

∣

∣

3N−1 ×
(

MZ = |m|
)

. (58)

Naturally, this formula for the magnitudes suggests the holomorphic relation

Λ3N
SYM = Λ3N−1

SQCD ×m, (59)

so let’s check the phases of the two sides of this formula. On the LHS

phase
(

Λ3N
SYM

)

= phase
(

exp(2πiτSYM)
)

= ΘSYM , (60)

and likewise on the RHS of eq. (59)

phase
(

Λ3N−1
SQCD

)

= ΘSQCD . (61)

However, in SQCD the proper CP-violating parameter is not the instanton angle Θ by itself

but rather

ΘSQCD = ΘSQCD + phase(m), (62)

— cf.my notes on instantons from the QFT 2 class, pages 22–30, — and it is this combination

that should match the ΘSYM of the low-energy theory,

ΘSYM = ΘSQCD + phase(m). (63)

In terms of the holomorphic Λ parameters, this means

phase
(

Λ3N
SYM

)

= phase
(

Λ3N−1
SQCD

)

+ phase(m), (64)

in perfect agreement with the holomorphic relation (59).
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Finally consider the supersymmetric vacuum states of SQCD. Since the non-perturbative

effects in this theory are low-energy, they are governed by the effective low-energy theory,

namely SYM. Thus, there areN vacua distinguished by the phases of the gaugino condensate:

〈S〉 =

(

numeric

factor

)

×
[

Λ3N
SYM

]1/N
× N

√
1

=

(

numeric

factor

)

×
[

λ3N−1
SQCD ×m

]1/N
× N

√
1,

(65)

where the second equality follows from eq. (22). Note that the magnitude of the gaugino

condensate grows for large m→ ∞ and shrinks for small m→ 0.

As to the ‘meson’ VEVs 〈AB〉, we cannot derive it from the effective theory from which

the quark fields are integrated out. But it can be calculated from the SQCD itself, and I

shall calculate it in a later section.

Light quark Limit

Thus far we have dealt with the heavy quark limit m ≫ ΛSQCD, but now consider the

opposite limit of the light quark m ≪ ΛSQCD. In the extreme limit of m = 0, the classical

potential for the quark fields has a flat direction parametrized by the ‘meson’ M = AiBi

acting as a modulus. Later in this section I shall show that the non-perturbative scalar

potential is non-flat but decreases for M → ∞. Without the quark mass, this causes a

runaway — thus no stable vacuum states — but for a small but non-zero m, the potential

reaches a supersymmetric minimum — or rather N supersymmetric minima — at large but

finite values of M. For the moment, let’s not worry how this works but simply assume large

meson VEV 〈M〉 ≫ Λ2
SQCD.

Note that an SQCD ‘meson’ is made from 2 scalar particles — a squark and an antisquark

— rather than two fermions, so the meson field can develop a large VEV without any strong

interactions. Instead, it simply reflects the large VEVs of the quark field themselves — up

to a gauge symmetry,

〈A〉 =













0
...

0

Φ













, 〈B〉 =
(

0 · · · 0 Φ
)

, Φ =
√
M ≫ ΛSQCD. (66)

15



The gauge coupling at the E = Φ ≫ ΛSQCD scale is not strong, so the squark VEVs (66)

lead to the semiclassical Higgs mechanism in which the SU(N) gauge group is broken down

to SU(N − 1). Or down to nothing for N = 2, but let’s assume N ≥ 3, so the effective

theory below the Higgs scale is not just the free modulus M but also the SU(N − 1) SYM.

The gauge coupling of that SYM — or rather its dimensional transmutant ΛSYM —

obtains from the RG flow across the vector mass threshold

M = g × |〈Φcan〉| = g × |〈Φ〉|√
Z

= g ×

∣

∣

∣

√
M
∣

∣

∣

√
Z

. (67)

Graphically,

logE

8π2/g2

ΛSQCDΛSYM M

slo
pe
=
3N

− 1

slo
pe

=
3(N

− 1)

(68)

where the lines are straight in the one-loop approximation. To all loop order, we use the

NSVZ equations: At high energies above the Higgs threshold

8π2

g2(E)
− N × log

1

g2(E)
+ logZ(E) = (3N − 1)× log

E

|ΛSQCD|
(69)

while at low energies below the threshold

8π2

g2(E)
− (N − 1) log

1

g2(E)
= (3N − 3)× log

E

|ΛSYM| . (70)

At the threshold E = M both equations should agree for the same gauge coupling g2(E),
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hence

(3N − 3)× log
M

|ΛSYM| − (3N − 1)× log
M

|ΛSQCD|
= log

1

g2(M)
− logZ(M) (71)

and therefore

|ΛSYM|(3N−3) =
∣

∣ΛSQCD

∣

∣

(3N−1) ×
(

g2Z(M)

M2
=

1

|M|

)

. (72)

Naturally, this formula for the magnitudes suggests the holomorphic relation

Λ
(3N−3)
SYM =

Λ
(3N−1)
SQCD

M , (73)

so let’s check the phases of the two sides of this formula. In terms of the instanton angles of

the high-energy and low-energy theories, the phase part of eq. (73) translates to

ΘSYM = ΘSQCD − phase(M), (74)

so let me explain the second term on the RHS. When SQCD is Higgsed down by the squark

VEVs of a single flavor, the massive vector superfields include two fundamental (N − 1)

multiplets of Dirac fermions: One is made from ψi
A and λNi (for i = 1, . . . , (N − 1)), and the

other from λiN and ψB,i. Both types of fermions get their masses from the Yukawa couplings

to the Φ∗ rather than to Φ, hence

phase(fermion mass) = − phase(Φ) = −1
2 phase(M). (75)

Consequently, the strong CP-violating parameter of the theory is

ΘSQCD = ΘSQCD + 2× phase(fermion mass) = ΘSQCD − phase(M). (76)

In the low-energy effective SYM theory, the corresponding CPV parameter is simply ΘSYM,

and that’s why we have

ΘSYM = ΘSQCD − phase(M), (74)

which is the phase part of the holomorphic relation (73).
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Now let’s use the relation

Λ
(3N−3)
SYM =

Λ
(3N−1)
SQCD

M (73)

to find the vacuum states of the theory and the VEVs of composite chiral superfields M and

S. For a given meson VEV 〈M〉, the gaugino condensate obtains as

〈S〉 = Λ3
SYM × (N−1)

√
1 =





Λ
(3N−1)
SQCD

M





1/(N−1)

× (N−1)
√
1, (77)

so there seems to be only N − 1 SUSY vacuum states of the theory. However, an SU(N)

SQCD with a massive flavor has the same Witten index N regardless of quark mass being

large or small, so there should be at least N vacua rather than N − 1.

To resolve this paradox, we notice that the meson VEV 〈M〉 itself is determined dy-

namically, so let’s see how this works. The low-energy EFT comprises the SYM and the

meson M; they are connected to each other via modulus-dependent ΛSYM, cf. eq. (73).

Through this connection, gaugino condensation in the SYM provides a non-perturbative

effective superpotential for the meson,

Wn.p.(M) =
(N − 1)

16π2
× Λ3

SYM =
(N − 1)

16π2
×





Λ
(3N−1)
SQCD

M





1/(N−1)

. (78)

In addition, the quark mass term acts as a tree-level superpotential for M,

Wtree = mAiBi = m×M . (79)

Altogether

Wnet(M) = Wtree(M) + Wn.p.(M), (80)

and the supersymmetric vacua obtain for M such that

∂Wnet

∂M = 0. (81)
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Evaluating the derivative on the LHS here, we get

∂Wnet

∂M = m − 1

16π2
×
[

ΛSQCD

](3N−1)/(N−1)
×
[

M
]−N/(N−1)

, (82)

so demanding it vanishes leads to

MN = Λ3N−1
SQCD × (16π2m)1−N . (83)

Thus, there are indeed N SUSY vacua distinguished by phases of the meson VEV

〈M〉 =

(

numeric

factor

)

×
[

Λ3N−1
SQCD

mN−1

]1/N

× N
√
1. (84)

As to the gaugino condensate 〈S〉, we may rewrite eq. (82) as

0 =
∂Wnet

∂M = m − 1

16π2
× S = Λ3

SYM

M , (85)

hence in any SUSY vacuum

m× 〈M〉 =
〈S〉
16π2

. (86)

Thus, plugging eq. (84) into this formula, we get

〈S〉 =

(

numeric

factor

)

×
[

m× Λ3N−1
SQCD

]1/N
× N

√
1 (87)

for the same N th root of unity as in eq. (84) for 〈M〉.

Note that according to eqs. (87) and (84), the gaugino condensates increases with growing

quark mass while the meson VEV decreases. And in the opposite direction of m → 0, we

have 〈S〉 → 0 while 〈M〉 → ∞. In particular, as I promised in the beginning of this section,

in the low-mass limit m ≪ ΛSQCD we have a large meson VEV 〈M〉 ≫ Λ2
SQCD and hence

semiclassical Higgs mechanism.
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The growing meson VEV 〈M〉 → ∞ in the m→ 0 limit suggests that in a truly massless

SQCD, the squark VEVs run away to infinity instead of having a stable vacuum value. To see

how this works, consider the effective theory for the Φ =
√
M field whose lowest component

is the squark VEV. For large Φ ≫ ΛSQCD, the gauge coupling is fairly weak at the Higgs

threshold, so we should have

K(Φ,Φ) = Ktree + small quantum corrections

≈ Ktree = 2ΦΦ.
(88)

Consequently, the scalar potential for Φ becomes approximately

V ≈ 1

2

∣

∣

∣

∣

∂W

∂Φ

∣

∣

∣

∣

2

, (89)

where in the absence of quark mass

W (Φ) = Wn.p.(Φ) =

(

numeric

factor

)

×
[

Λ3N−1
SQCD

M = Φ2

]1/(N−1)

= const× Φnegative.

(90)

Therefore, at large Φ the scalar potential becomes

V (Φ) = const× |Φ|negative, (91)

|Φ|

V

(92)

which indeed has no stable minima but pushes 〈Φ〉 to infinity.
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Higgs–Confinement Complementarity

Thus far we have seen two different regimes of SQCD:

1. The confinement regime for m ≫ ΛSQCD: The heavy quark decouples, and then the

remaining SU(N) SYM theory confines all N colors and generates the gaugino con-

densate.

2. The Higgs regime form≪ ΛSQCD: The squarks get large semiclassical VEVs and Higgs

the SU(N) gauge theory down to SU(N − 1). And then the remaining SU(N − 1)

SYM confines N − 1 colors out of N , and also generates the gaugino condensate.

The two regimes look quite different, nevertheless they both have the same number N of

SUSY vacua, even the same analytic formula for the gaugino condensates in these vacua:

〈S〉 =

(

numeric

factor

)

×
[

m× Λ3N−1
SQCD

]1/N
× N

√
1 (93)

Moreover, a more careful analysis of the numerical factor here would show it has the same

value in both confinement and Higgs regimes.

For the Higgs regime we have also calculated the ‘meson’ VEV 〈M〉 =
〈

AiBi

〉

which

acts as a gauge-invariant measure of the 〈squark〉2. Specifically,

〈M〉 =
〈S〉

16π2m
〈〈 exactly 〉〉

=

(

numeric

factor

)

×
[

Λ3N−1
SQCD

mN−1

]1/N

× N
√
1.

(94)

But what about the meson VEV in the confinement regime of m≫ ΛSQCD? In this regime,

there are no semiclassical squark VEVs, but the strong attraction between the massive

squarks and antisquarks leads to a small bilinear condensate 〈M〉 6= 0. To see how it

works, consider the composite meson superfield M in the background of gauge superfields.
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Perturbatively, we have

M

A

B

(95)

where each diagram loos exactly like the similar diagram for the Konishi anomaly calculated

in the Pauli–Villars regularization scheme as

−1
4D

2
Jrmaxial = 2MPV × 〈XY 〉 =

1

8π2
× tr

(

WαWα

)

(96)

(where X and Y are the Pauli–Villars compensating fields and MPV is their mass). For the

massive squark fields — and negligible momenta of all external particles — we get exactly

the same formula

m× 〈XY 〉 =
1

16π2
× tr

(

WαWα

)

, (97)

which in presence of the gaugino condensate

〈S〉 =
〈

tr
(

WαWα

)〉

(98)

immediately implies

〈M〉 =
〈S〉

16π2m
. (99)

Comparing this formula for the confinement regime with eq. (94) for the Higgs regime, we

see exactly the same analytic formula for both regimes!

Physically, have exactly the same analytic formulae for the gaugino condensate 〈S〉 and
meson VEV 〈M〉 in both regimes indicates that there is no sharp phase transition between

the two regimes. Instead, there is a smooth cross-over between the confinement and the Higgs

regimes, so the difference between them is a difference of degree rather than a difference of

kind. Technically, this means that any order parameter of SQCD would vary continuously

with the m/ΛSQCD ratio rather than suddenly jump at some transition point.
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Naively, this contradicts the qualitative difference in the Wilson loop asymptotics be-

tween confining theories (area law) and non-confining theories (perimeter law). However,

the perfect area law — and hence perfect confinement of quark-like external probes — is

possible only in theories without any particles at all in the fundamental multiplets of SU(N),

thus no quarks or squarks at all, however massive. But once we introduce dynamical quarks

and/or squarks in the fundamental N multiplets of the gauge symmetry, a flux tube between

external probes can break in two by pair-creating a qq̄ pair in the middle of the tube:

Q Q

⇐
=

Q Qq̄ q+
(100)

For a heavyish dynamical quark q, this process has exponentially low amplitude O(πm2
q/(flux

tube tension)), but it’s possible, so for an exponentially large Wilson loop the area low turns

into the perimeter law. For smaller quark masses, the area law turn to perimeter law for

smaller Wilson loops, until eventually for smallm there is no area law at all. But formally, the

order parameter for the confinement is the asymptotic behavior of Wilson loops of size → ∞,

so we get the perimeter law for any finite quark mass, however large.

And that’s how we get a smooth crossover between the confining and the Higgs regimes

of SQCD!

While supersymmetry helps establish the smooth crossover between the confinement at

the Higgs regimes, such smooth crossovers also happen in non-supersymmetric theories. This

so-called confinement–Higgs complementarity was discovered back in 1979 in lattice models

by Fradkin and Shenker and elaborated by many other people.

In general, whenever two regimes of the same system differ in degree rather than in

kind, the transition between could be continuous or discontinuous, or even depend on some

other parameter. For example, the gas and the liquid phases of some material have similar

symmetries but different densities, so this is a difference in degree rather than in kind. And
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the transition between the two phases as a function of temperature could be continuous at

supercritical pressures but first-order at low pressures.

For a QFT example, consider an SU(2) gauge theory coupled to a single doublet of

scalars of some mass2 and quartic self-coupling λ. At weak gauge coupling, the theory is

in the Higgs regime for m2 < 0, and in the confining regime for m2 > 0, or at least for

m2 ≫ Λ2. Moreover, there is a clear phase transition between the two regimes. But the

lattice calculations show that at strong gauge couplings the phase transition disappears and

becomes a continuous crossover, just like the gas-liquid transition at a supercritical pressure.

And as usual in such situations, there is a critical point where the phase transition disappears

and becomes a smooth crossover. Here is the diagram:

m2

g2

Higgs confinement

critical point

(101)

But unlike the above theory, the SQCD does not have a critical point. Instead, the

transition between the Higgs and the confinement regimes is always continuous, that’s why

we have exactly the same analytic formulae for the 〈S〉 and 〈M〉 as functions of m and

ΛSQCD for both regimes.

Veneziano Yankielowicz Superpotential

Now consider the effective superpotential for both the meson M and the gaugino conden-

sate S, or rather for their fluctuations δM and δS around their VEVs is some supersymmetric

vacuum. Physically, the EFT for just the δM and δS fields makes sense when these are the

lightest particles of the theory, so we are going to derive the VY superpotential W (S,M) for

the Higgs regime of m≪ ΛSQCD. However, thanks to the Higgs-confinement complementar-

ity, exactly the same holomorphic superpotential W (S,M) should work for all the regimes

of SQCD and not just the Higgs regime.
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The tree-level superpotential for the meson M is simply the quark mass term

Wtree(M) = mBiA
i = m×M, (102)

and there are no perturbative corrections. There are of course the non-perturbative correc-

tions due to gaugino condensation, but they should not directly depend on the quark mass

m but only indirectly via the meson VEV 〈M〉 itself.⋆ Thus altogether we should have

W (M, S;m,ΛSQCD) = m×M + Wn.p.(M, S;m,ΛSQCD). (103)

Next, we know that for any mass 〈M〉 = 〈S〉 /16π2m. In terms of the effective superpoten-

tial (102), this means that

∂W

∂M = 0 when M =
S

16π2m
(104)

and hence

∂Wn.p.

∂M = −m = − S

16π2M . (105)

Solving this differential equation, we get

Wn.p.(M, S,ΛSQCD) = − S

16π2
× log(M) + f(S; ΛSQCD only) (106)

where the last term is the integration ‘constant’ — it does not depend on M but may depend

of S or ΛSQCD. To determine this integration ‘constant’, let’s integrate out the meson M
to get the effective theory for just the gaugino condensate S. The result should match the

Veneziano–Yankielowicz superpotential of the effective SYM theory we have derived in the

previous section,

Weff(S) = − S

16π2

(

log
SN

Λ3N
SYM

− C

)

(107)

for some numerical constant C. On the other hand, integrating out the meson superfield

from the superpotential (103) amounts to solving the equation ∂W/∂M = 0 for M and

⋆ This heuristic argument is due to Veneziano and Yankielowicz. It’s hardly rigorous, but the result

works!
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plugging the solution back into the superpotential, thus

W (M, S;m,ΛSQCD)) = m×M − S

16π2
× log(M) + f(S; ΛSQCD)

for M =
S

16π2m

becomes =
S

16π2

(

1 − log
S

16π2m

)

+ f(S; ΛSQCD).

(108)

Comparing the two effective superpotentials (108) and (107), we see that

f(S; ΛSQCD) = − S

16π2

(

log
SN

Λ3N
SYM = mΛ3N−1

SQCD

− C

)

− S

16π2

(

1 − log
S

16π2m

)

= − S

16π2

(

log
16π2SN−1

Λ3N−1
SQCD

+ 1 − C

)

(109)

and hence

W (M, S;m,ΛSQCD)) = m×M − S

16π2

(

log
SN−1 ×M
Λ3N−1
SQCD

− C ′

)

(110)

for a numeric constant C ′ = C − 1− log(16π2). This is the Veneziano–Yankielowicz super-

potential for the SQCD with 1 massive flavor. By the Higgs-confinement complementarity,

this superpotential works for all regimes of SQCD, high-mass, low-mass, or anything it be-

tween. On the other hand, it does not work for all the SUSY vacua of SQCD but only

for the vicinity of one vacuum state at a time but not for any interpolation between two

different vacua. Specifically, choosing a particular Riemann sheet of the log function in the

superpotential (110) chooses a particular vacuum state,
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SQCD with Several Massive Flavors

Now let’s turn our attention to SQCD with Nc colors and Nf > 1 flavors, all massive.

In matrix notations,
⋆
the theory has bare Lagrangian

L =

∫

d2θ d2θ̄
(

tr
(

ZAA exp(+2V )A
)

+ tr
(

ZBB exp(−2V )B
)

)

+

∫

d2θ

(

tr(mBA) +
iτ

8π
tr
(

WαWα

)

)

+ H. c.

(111)

Suppose all quark masses — i.e., all the eigenvalues of themmatrix — are heavy, much larger

than the ΛSQCD scale. This allows us to integrate out all the quarks from the low-energy

effective theory — which then is just the SYM.

To find the coupling of that SYM, let’s start with the Θ = 2πRe τ . In the ordinary

QCD, the CP violating parameter is not the instanton angle Θ per se but the combination

Θ = Θ + phase(det(m)) (112)

that is invariant under anomalous chiral transforms of the quarks. In SQCD, the chiral

redefinitions of the quark fields become chiral linear redefinitions of the whole quark super-

fields, but that does not affect the anomaly, so the CP violating parameter is exactly as in

eq. (112). And when we integrate out the quark superfields from the effective low-energy

SYM theory, the result should not depend on the redefinitions of the integrated-out fields,

hence

ΘSYM = ΘSQCD = ΘSQCD + phase(det(m)). (113)

In terms of the complex ΛSYM and ΛSQCD parameters of the low-energy and the high-energy

theories, this relation becomes

phase
(

Λ3Nc

SYM

)

= phase
(

Λ
3Nc−Nf

SQCD

)

+ phase(det(m)), (114)

⋆ The quark superfields A and B are Nc ×Nf matrices, the antisquark superfields A and B are Nf ×Nc

matrices, the vector superfield V is a traceless hermitian Nc × Nc matrix, the quark masses form

a complex Nf × Nf matrix m, and the the normalization factors for the A and B superfields form

hermitian Nf ×Nf matrices ZA and ZB.
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and by holomorphy, it should extend to the relation of both phases and magnitudes:

Λ3Nc

SYM = Λ
3Nc−Nf

SQCD × det(m)×
(

numeric

constant

)

. (115)

For the hierarchical quark masses m1 ≫ m2 ≫ · · · ≫ mNf
≫ ΛSQCD we may derive the

magnitude part of eq. (115) from the RG flow over several thresholds, but let me leave this

exercise for your next homework. Instead, I am going to derive eq. (115) in all its holomorphic

glory from the Konishi anomaly of the quark superfield redefinitions.

Indeed, consider a general linear redefinition of the quark superfields; in matrix notations

A′ = A× UA, B′ = UB ×B, A
′
= U†

A × A, B
′
= B × U†

B (116)

for some arbitrary invertible Nf ×Nf matrices UA and UB. Note: invertible, but generally

not unitary! This field redefinition should be accompanied by changing the m, ZA, and ZB

matrices of the theory according to

m′ = U−1
A ×m×U−1

B , ZA = U−1
A ×ZA×

(

U†
A

)−1
, ZB =

(

U†
B

)−1×ZB ×U−1
B (117)

to preserve the bare Lagrangian (111), and we should also shift the bare gauge coupling τ

to cancel the Konishi anomaly of the transform (116):

τ ′ = τ − i

2π

(

log det(UA) + log det(UB)
)

. (118)

At the same time,

log det(m′) = log det
(

U−1
A

)

+ log det(m) + log det
(

U−1
B

)

= log det(m) − log det(UA) − log det(UB),
(119)

hence the holomorphic combination

T = 2πiτ + log det(m) (120)

remains invariant under the transform,

T ′ = T. (121)

Moreover, this is the only invariant combination of the holomorphic parameters τ and mff ′

of the theory.
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When we integrate out the squark superfields, their redefinitions should not matter to

the low-energy effective SYM, so the SYM gauge coupling should depend on the invariant T

rather then τSQCD itself, and the only holomorphic dependence τSYM(T ) that makes sense

in the context of gauge couplings is

2πiτSYM = T + const = 2πiτSQCD + log det(m). (122)

Or in terms of dimensional transmutants of the two theories,

Λ3Nc

SYM = Λ
3Nc−Nf

SQCD × det(m)×
(

numeric

constant

)

. (115)

Anyway, the Nc supersymmetric vacua of SQCD — and the gaugino condensates 〈S〉
which distinguish between them — can be obtained from the effective low-energy SYM

theory. Given its ΛSYM parameter from eq. (115), we immediately have

〈S〉 =

(

numeric

factor

)

× Λ3
SYM × Nc

√
1

=

(

numeric

factor

)

×
[

Λ
3Nc−Nf

SQCD × det(m)
]1/Nc

× Nc
√
1

(123)

where different Nc
√
1 roots of unity correspond to the different SUSY vacuum states of the

theory.

Next, let’s find the VEVs of the meson matrix
〈

Mff ′

〉

for all the vacua of SQCD in the

high-mass regime. For a single flavor, we saw that the anomaly-like diagrams

M

A

B

(124)

lead to

〈M〉 = 〈BA〉 =
〈S〉

16π2m
(125)

At zero external momenta, only the one-loop diagrams (124) contribute to the relation (125)

Consequently, in the multi-flavor SQCD with a diagonal mass matrix mff ′ = mfδff ′ , we
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have completely independent diagrams (124) for each flavor, hence

〈

BfAf

〉

=
〈S〉

16π2mf
. (126)

At the same time, thanks to the [U(1)V ]
Nf vector symmetry of the theory — one U(1)V

symmetry for each flavor — the meson VEVS do not mix flavors,

〈

BfAf ′

〉

= 0 for f ′ 6= f. (127)

In terms of the diagonal mass matrix m this means that the meson VEV matrix is propor-

tional to the m−1 matrix,

〈M〉ff ′ = (m−1)ff ′ × S

16π2
. (128)

Moreover, in a different flavor basis where the quark mass matrix m is not diagonal, we get

exactly the same matrix relation by changing the basis to the eigenbasis of m and then going

back to the original basis, thus

〈matrix M〉 =
(

matrix m
)−1 × S

16π2
. (129)

Or in terms of ΛSQCD and the mass matrix,

〈matrix M〉 =
(

matrix m
)−1 ×

[

Λ
3Nc−Nf

SQCD × det(m)
]1/Nc

×
(

numeric

factor

)

× Nc
√
1. (130)

The Higgs-confinement complementarity should work in the multi-flavor SQCD just as

well as in the single-flavor theory, so we expect the holomorphic relations (123) and (130)

to work in both heavy-lass and light-mass regimes. So let’s see what happens to the meson

VEVs in the low-quark-mass limit. To be specific, let’s start with some general mass matrix

m and then uniformly scale it by some factor t < 1, m′ = tm, then

(m′)−1 =
1

t
×m−1 while det(m′) = tNf × det(m). (131)

Plugging this scaling into eq. (130), we find that

〈

matrix M′
〉

= 〈matrix M〉× tNf/Nc

t
∝ t(Nf−NC)/Nc . (132)
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Thus, in the zero mass limit in the t → 0 direction, the meson VEVs grow for Nf < Nc,

stay finite for Nf = Nc, and shrink for Nf > Nc. Physically, this means that the large

semiclassical squark VEVs obtain in the low-mass limit only for Nf < Nc. Likewise, for

a completely massless theory, the runaway squark VEVS 〈A〉 , 〈B〉 → ∞ happen only for

NF < Nc. Instead, SQCD theories with Nf > Nc massless flavors have continuous families

of supersymmetric vacua with V = 0, and we shall spend quite a few lectures discussing

them in class. But through the remainder of these notes, I am limiting the discussion to

SQCD theories with Nf < Nc and assume that all the flavors are massive.

For Nf < Nc, the low-quark-mass behavior of the theory is the Higgs regime in which

large semi-classical squark VEVs spontaneously break the SU(Nc) gauge symmetry down to

SU(Nc −Nf ). Or down to nothing for Nf = Nc − 1, but in that case, the non-perturbative

effects have a rather different origin. So let’s focus on the Nf ≤ Nc − 2 cases where the

low-energy effective theory is the SU(Nc −Nf ) SYM coupled to N2
f mesonic moduli Mff ′ ,

and the non-perturbative superpotential is generated by the SYM gaugino condensate

〈S〉 =

(

numeric

factor

)

× Λ3
SYM(M). (133)

To find the moduli dependence of the ΛSYM — or equivalently, of the SYM Wilsonian gauge

coupling τSYM, — we start with the high-energy SQCD theory and its linear redefinitions

A′ = A× UA, B′ = UB ×B, A
′
= U†

A × A, B
′
= B × U†

B (116)

of the quark superfields. Under such a redefinition, the meson matrix M becomes

M′ = UB ×M× UA (134)

while the Wilsonian gauge coupling τ becomes

τ ′ = τ − i

2π

(

log det(UA) + log det(UB)
)

(118)

to compensate for the Konishi anomaly. The only holomorphic invariant combination of the
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τ and the moduli matrix M is

P = 2πiτ − log det(M). (135)

The gauge coupling of the low-energy SYM should be invariant under redefinition of the

quark and meson fields, hence

2πiτSYM = PSQCD + const = 2πiτSQCD − log det(M) + const. (136)

Or in terms of the respective complex ΛSYM and ΛSQCD,

Λ
3(Nc−NF )
SYM =

Λ
3Nc−Nf

SQCD

det(M)
×
(

numeric

factor

)

. (137)

Alternatively, we can get the same formula by running the RG flow through several vector-

mass thresholds, but let’s leave that exercise for the next homework set.

Instead, I am going to use eq. (137) to find the gaugino condensate as a function of

the meson VEVs, then derive the Veneziano–Yankielowicz superpotential for both S and

the meson matrix, and eventually the vevs of both the mesons and the gaugino condensate.

Indeed, plugging eq. (137) into eq. (133) we get

〈S〉 =

(

numeric

factor

)

× Λ3
SYM

=

(

numeric

factor

)

×
[

Λ
3Nc−Nf

SQCD

det(M)

]1/(Nc−Nf )

.

(138)

Moreover, treating the meson VEVs as moduli, we can get the Veneziano–Yankielowicz

superpotential for both S and M by simply plugging eq. (137) for the ΛSYM(M) into the

Veneziano–Yankielowicz superpotential for just the S superfield:

W = − S

16π2
×
(

log
SNc−Nf

Λ3(Nc−Nf )
− C

)

= − S

16π2
×
(

log
SNc−Nf × det(M)

Λ
3Nc−Nf

SQCD

− C ′

)

(139)

where C and C ′ are some numeric constants. Or rather, this is the non-perturbative part of

the Veneziano–Yankielowicz superpotential, but there is also a tree-level term tr(mM) from
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the quark masses. Altogether, the Veneziano–Yankielowicz superpotential for SQCD is

WVY(M, S) = tr(mM) − S

16π2
×
(

log
SNc−Nf × det(M)

Λ
3Nc−Nf

SQCD

− C ′

)

. (140)

Finally, the VEVs of the S and meson fields obtain by solving the algebraic equations

∂WVY

∂Mff ′

= 0 and
∂WVY

∂S
= 0. (141)

In particular,

∂WVY

∂Mff ′

= mf ′f − S

16π2
×
(

M−1
)

f ′f
, (142)

which vanishes when

(matrix M)× (matrix m) =
S

16π2
× (unit Nf ×Nf matrix), (143)

exactly as in eq. (129) for the confinement-regime.

At the same time,

∂WVY

∂S
= − 1

16π2

(

log
SNc−Nf × det(M)

Λ
3Nc−Nf

SQCD

+ (Nc −NF ) − C ′

)

, (144)

which vanishes for

SNc−Nf =
Λ
3Nc−Nf

SQCD

det(M)
×
(

numeric

factor

)

, (145)

exactly as eq. (138). Finally, combining this formula with eq. (143), we get

〈S〉Nc−Nf = Λ
3Nc−Nf

SQCD × det(m)

〈S〉Nf
×
(

numeric

factor

)

, (146)

hence

〈S〉 =
[

Λ
3Nc−Nf

SQCD × det(m)
]1/Nc

×
(

numeric

factor

)

× Nc
√
1 , (147)

and therefore

〈matrix M〉 = (matrix m)−1 ×
[

Λ
3Nc−Nf

SQCD × det(m)
]1/Nc

×
(

numeric

factor

)

× Nc
√
1 , (148)

exactly as in eqs. (123) and (130) for the confinement regime.
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For completeness sake, we should also check that the same formula for the VEVs apply

to the mixed regimes in which some quark masses are heavy (compared to the ΛSQCD) while

other quark masses are light. In this case, we get large semiclassical squark VEVs for the

light quark flavors only, the SU(Nc) gauge symmetry is Higgsed down to SU(Nc − N light
f ),

and once we integrate out both the heavy flavors and the massive vectors, we end up with an

effective SYM whose gaugino condensation generates the non-perturbative superpotential.

And after some algebra — which I leave as an optional exercise for the interested students

— we end up with exactly the same holomorphic formulae for the 〈S〉 and 〈M〉 VEVs as in
the all-flavors-heavy and all-flavors-light regimes.

What happens for Nf = Nc − 1?

Finally, consider SQCD with Nf = N1 − 1. In the regimes where all quark masses are

heavy, or some flavor’s masses are heavy and some are light, this theory behaves exactly as

SQCD with Nf ≤ Nc − 2, and has exactly the same type of the Veneziano–Yankielowicz

superpotential

WVY(M, S) = tr(mM) − S

16π2
×
(

log
S(Nc−Nf=1) × det(M)

Λ
3Nc−Nf

SQCD

− C ′

)

(149)

and hence similar VEVs of the gaugino condensate and of the meson matrix. But in the

regime where all quark flavors are light, hence all Nf = Nc − 1 squark flavors have large

semiclassical VEVs, the SU(N) gauge theory is Higgsed down to nothing, so the effective

low-energy theory has mesons but no gauge fields. Consequently without the low-energy

SYM theory to generate the gaugino condensate, where does the non-perturbative term in

the superpotential (149) come from?

To answer this question — or at least to get some clues, — let’s integrate out the S field

from the superpotential (149) and get the effective superpotential just for the meson matrix.

Thus, solving ∂WVY/∂S for S we find

〈S〉 =

(

numeric

factor

)

×
Λ
3Nc−Nf

SQCD

det(M)
(150)
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and hence

Weff(M) = WVY(〈S〉 (M),M) = tr(mM) +

(

numeric

factor

)

×
Λ
3Nc−Nf

SQCD

det(M)
. (151)

Now, a close look at the non-perturbative term here gives us a couple of useful clues:

Clue#1:

The non-perturbative term here is a single-valued function of the meson matrix M.

This means it’s origin does not involve any spontaneous symmetry breaking by any

hidden degrees of freedom (such as the a gaugino condensate).

Clue#2:

The overall coefficient of the non-perturbative term is

Λ
3Nc−Nf

SQCD ∝ exp(2πiτ) = exp(iΘ)× exp

(

−8π2

g2w

)

. (152)

Both factors on the RHS here suggest a one-instanton effect. Indeed, a single YM

instanton has action 8π2/g2, so a one-instanton effect’s amplitude is suppressed by

the factor exp(−action) = exp(−8π2/g2). Also, for Θ 6= 0, so the the amplitudes

originating in the one-instanton sector carry the exp(iΘ) phase.

And indeed, in 1983 Ian Affleck, Michael Dine, and Nathan Seiberg found that the

instantons in a completely Higgsed down SQCD indeed generate a non-perturbative super-

potential of the form (151). How this works is beyond the scope of these notes, but I shall

explain it in class one I remind you how the instantons work in the ordinary gauge theories.
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