
SUPERSYMMETRIC HIGGS MECHANISM

Caveat: These notes are about spontaneous gauge symmetry breaking in a supersym-

metric theory — specifically, N = 1 SUSY in d = 4 dimensions, — rather than spontaneous

breaking of the supersymmetry itself.

Without SUSY, when a gauge symmetry is spontaneously broken, the Higgs mechanism

‘eats’ a real scalar for every vector field that becomes massive. The simplest explanation for

that is basic polarization counting: A massless gauge boson has two transverse polarization

states but no longitudinal polarization. In helicity terms, this means it may have λ = +1 or

λ = −1 but not λ = 0. On the other hand, a massive gauge boson must have a complete

spin = 1 multiplet of polarization states, which means helicities λ = +1, λ = −1 and also

λ = 0. That λ = 0 polarization corresponds to a degree of freedom the gauge boson did not

have when it was massless, so it must come from someplace else. In other words, the Higgs

mechanism which makes the gauge boson massive must ‘eat’ a λ = 0 degree of freedom that

used to belong to some other kind of particle. And since the eaten degree of freedom has

only one λ = 0 polarization, it must have been a scalar (or pseudoscalar).

In supersymmetric theories we should consider SUSY multiplets rather than mere spin

/ helicity multiplets, and that makes for a much larger difference between the massless and

massive vector multiplets. Specifically,




massive

vector

multiplet


 −




massless

vector

multiplet


 =




complex

scalar

multiplet


 , (1)

so the supersymmetric Higgs mechanism eats a whole complex scalar multiplet for every gauge

boson that becomes massive.

Indeed, consider the N = 1 supermultiplets in 4D. The SUSY algebra is generated by 4

operators Q̂1,2 and Q̂†
1,2 that commute with energy and momentum and obey anticommuta-

tion relations

{Q̂1, Q̂2} = {Q̂†
1, Q̂

†
2} = 0, (2)

{Q̂α, Q̂†
α̇} = 2Pµσ

µ
αα̇ . (3)
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When acting on 1-particle states of definite timelike momentum P µ, the matrix Pµσ
µ is

positive-definite, so the algebra of Q̂ and Q̂† operators is equivalent to the Clifford algebra of

2 pairs of fermionic creation and annihilation operators, so its basic multiplet has 4 states, 2

bosons and 2 fermions. Taking into account that both Q̂α and Q̂†
α̇ operators have spin = 1

2 ,

we get the following diagrams how the operators act on the 4 states of this multiplet:

spin = 0 spin = 1
2

spin = 0
Q̂†

Q̂

Q̂†

Q̂
(4)

This is the massive scalar multiplet, comprising 2 real scalars and one real (Majorana)

spin = 1
2 fermion. It obtains when the state annihilated by both Q̂α (leftmost on the above

diagram) has spin = 0. Replacing that state with a spin = 1
2 doublet of states, we construct

the massive vector multiplet

spin = 1
2 spin = 1

2

spin = 1

spin = 0

Q̂†

Q̂

Q̂†

Q̂

Q̂†

Q̂

Q̂†

Q̂

(5)

This multiplet comprises a massive spin = 1 vector, a real scalar, and two real spin = 1
2

fermions. In terms of helicities, this multiplet has 8 states with helicities

λ ∈
(
−1,−1

2 ,−1
2 , 0, 0,+

1
2 ,+

1
2 ,+1

)
. (6)

Now consider the massless supermultiplets. For a lightlike momentum P µ of a massless

particle, the matrix Pµσ
µ in the anticommutation relation (3) has a zero eigenvalue, so one

pair of the Q̂ and Q̂† operators become null — they kill all the states — and only the other

pair turn states into their superpartners. Thus, a basic massless supermultiplet comprises

2 states — one boson and one fermion — and their helicities differ by ∆λ = ±1
2 (because

that’s the helicities of the non-null Q̂ and Q̂† operators). For example, (λ = 0, λ = +1
2)
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or (λ = 0, λ = −1
2) for a chiral scalar multiplet. Together, 2 such multiplets related by

Hermitian conjugation form a complex scalar multiplet

λ ∈
(
−1

2 , 0, 0,+
1
2

)
. (7)

Physically, it comprises a complex scalar, a Weyl fermion, and their respective antiparticles.

Or in terms of real (neutral) particles, two real scalars and one Majorana fermion.

Likewise, a massless vector multiplet comprises two helicity pairs (λ = +1
2 , λ = +1) and

(λ = −1
2 , λ = −1) related by CP symmetry. Altogether, it has 4 states

λ ∈
(
−1,−1

2 ,+
1
2 ,+1

)
, (8)

which physically comprise a real massless vector and a massless Majorana fermion.

Comparing the massive and massless vector multiplets (6) and (8), we immediately see

a big difference: The massive multiplet has 8 helicity states while the massless multiplet has

only 4. The missing helicity state comprise

(
−1,−1

2 ,−1
2 , 0, 0,+

1
2 ,+

1
2 ,+1

)
−
(
−1,−1

2 ,+
1
2 ,+1

)
=
(
−1

2 , 0, 0,+
1
2

)
, (9)

which is precisely the content of a complex scalar multiplet (7). Thus, to make a massless

vector multiplet into a massive vector multiplet, the supersymmetric Higgs mechanism must

‘eat’ a whole complex scalar multiplet.

SQED Example

Let me illustrate the supersymmetric Higgs mechanism — in the ordinary field for-

malism and in the superfield formalism — using SQED as an example. SQED stands for

supersymmetric QED, and its particle spectrum has just 3 supermultiplets: the massless

vector supermultiplet V comprising the photon and the photino, and two scalar multiplets

A and B comprising the Dirac electron and two selectrons a and b. Specifically,

ΨDirac =

(
ψα

χα̇

)
where a, ψα ∈ A while b, χβ ∈ B, (10)

so A has electric charge −e while B has electric charge +e. In terms of the corresponding
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superfields — chiral A and B and vector V — the SQED Lagrangian is

L =

∫
d4θ

(
1
8V D

αD
2
DαV + A exp(−2eV )A + B exp(+2eV )B

)

+

∫
d2θmAB +

∫
d2θ̄ mAB.

(11)

To get the component-field Lagrangian, we should first impose the Wess–Zumino gauge

condition

at θ = θ̄ = 0, V =
∂V

∂θ
=

∂V

∂θ̄
=

∂2V

∂θ2
=

∂2V

∂θ̄2
= 0, (12)

and only then expand all superfields into components. The result is

L = −1
4FµνF

µν + λσ̄µ∂µλ + 1
2D2

+ (Dµa
∗)(Dµa) + (Dµb

∗)(Dµb) + F ∗
aFa + F ∗

b Fb

+ iψσ̄µDµψ + iχσ̄µDµχ + mψχ + mψχ

+
√
2e
(
−a∗λψ + b∗λχ − aλψ + bλχ

)

+ eD ×
(
−a∗a + b∗b

)
+ m

(
aFb + bFa + a∗F ∗

b + b∗F ∗
a

)
.

(13)

where D, Fa, and Fb are auxiliary fields. Eliminating them by their equations of motion, we

get the scalar potential of the theory:

V =
e2

2

(
−a∗a + b∗b

)2
+ m2

(
a∗a + b∗b

)
. (14)

For any non-zero mass m, this potential has a unique minimum at a = b = 0, so there are

no scalar VEVs, no Higgs mechanism, and all the electron ans selectron fields are massive.

So from now on, we shall focus on the massless theory with m = 0.
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Component Field Formalism

For m = 0 the scalar potential (14) vanishes whenever |a| = |b|. Moreover, we shall

learn later in class that this locus of exactly zero potential is not affected by any quantum

corrections. Thus, the theory has exactly degenerate family of vacua parametrized by 2

complex VEVs 〈a〉 and 〈b〉 subject to a real constraint |〈a〉| = |〈b〉|. This is a rather common

phenomenon in supersymmetric theories, so it comes with a terminology: The parameters

of the degenerate vacua are called moduli, the space of allowed values of these parameters is

the moduli space, and the fields whose VEVs are moduli are called moduli fields or moduli

scalars .

The moduli space of the massless SQED appears to have 3 real dimensions: it has 2

complex parameters subject to a real constraint. However, one of these 3 dimensions is an

artefact of the residual gauge symmetry. Indeed, the Wess–Zumino gauge condition on the

vector superfield V does not fix the ordinary gauge transforms of the component fields,

a′(x) = a(x)× e−iφ(x), ψ′(x) = ψ(x)× e−iφ(x),

b′(x) = b(x)× e+iφ(x), χ′(x) = χ(x)× e+iφ(x),

λ′(x) = λ(x), A′
µ(x) = Aµ(x) − 1

e
∂µφ(x).

(15)

To fix this residual gauge redundancy, we need to impose another gauge condition at every

point in space, and for the Higgsed down theory with 〈a〉 6= 0 and/or 〈b〉 6= 0, the simplest

extra gauge condition would be the unitary gauge such as phase(a) = 0 or phase(b) = 0.

However, for two scalar fields a and b of opposite electric charges ∓e, — and both fields

having VEVs of similar magnitudes — the best unitary gauge condition is the combined

condition

phase(a) = phase(b). (16)

This condition is particularly convenient for the moduli space of the massless SQED. Indeed,

combining the unitary gauge condition (16) with the zero-potential condition |a| = |b|, we
get a complex constraint on the VEVs:

〈a〉 = 〈b〉 . (17)

Consequently, the moduli space of the gauge-fixed theory has only one complex dimension,

or two real dimensions.
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This is a general behavior of supersymmetric theories: Once the gauge redundancy is

completely fixed, the moduli space of any theory with un-broken SUSY always has an even

real dimension. Moreover, the moduli scalars can always be organized into complex fields

that are lowest components of some massless chiral superfields, and the geometry of the

moduli space is always a Kähler geometry. I shall return to this issue later in class.

Meanwhile, let’s calculate the masses of all particle in a vacuum with 〈a〉 = 〈b〉 6= 0. In

light of the unitary gauge condition (16), let’s parametrize the scalar fields as

a(x) = 1
2φ(x)× eiΘ(x)+α(x), b(x) = 1

2φ(x)× eiΘ(x)−α(x), (18)

for real φ 6= 0, Θ, and α. Consequently, the scalar kinetic terms become

|Dµa|2 + |Dµb|2 = |∂µa− ieAµa|2 |∂µb+ ieAµb|2

=
e+2α

4

(
(∂µφ+ φ∂µα)

2 + φ2(∂µΘ− eAµ)
2
)

+
e−2α

4

(
(∂µφ− φ∂µα)

2 + φ2(∂µΘ+ eAµ)
2
)

=
cosh(2α)

2
×
(
(∂µφ)

2 + φ2(∂µα)
2 + φ2(∂µΘ)2 + e2φ2(Aµ)

2
)

+ sinh(2α)×
(
(∂νφ)× φ(∂µα) − (∂µΘ)× (eφAµ)

)

=
1

2
(∂µφ)

2 +
〈φ〉2
2

(∂µα)
2 +

〈φ〉2
2

(∂µα)
2 +

e2〈φ〉2
2

(Aµ)
2

+ interaction terms,

(19)

which means the vector field Aµ gets mass M = e 〈φ〉, while the 3 canonically normalized

un-eaten scalar field correspond to

δφ(x) = φ(x) − 〈φ〉 , 〈φ〉 ×Θ(x), 〈φ〉 × α(x). (20)

The masses of these scalars follow from

a∗a − b∗b = 1
2φ

2 × sinh(2α), (21)

hence the scalar potential

V =
e2

8
φ4 × sinh2(2α) =

e2〈φ〉2
2

×
(
〈φ〉 × α

)2
+ interaction terms. (22)

Thus, the real scalar field vevφ×α(x) acquires exactly the same massM = e 〈φ〉 as the vector
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field, while the other two real scalars remain exactly massless. Together, the two massless

scalars comprise the complex modulus field

Φ(x) =
√

1
2φ(x)e

iΘ(x). (23)

Next, consider the 3 LH Weyl fermions of the theory, λ, ψ, and χ. When the scalar fields

a and b develop non-zero VEVs, the Yukawa couplings of the photino λ to the electron ψ

and positron χ give rise to the fermionic mass terms,

LFM = −
√
2e 〈a〉∗ × λψ + −

√
2e 〈b〉∗ × λχ + H. c.

= e 〈φ〉 e−i〈Θ〉 × λα
(
χ− ψ√

2

)

α

+ H. c.
(24)

This is a Dirac mass of magnitudeM = e 〈φ〉 — same as the photon’s mass — connecting the

photino λ and a combination χ−ψ√
2

of the electron and positron fields. The other combination
χ+ψ√

2
remains massless.

Altogether, we end up with several particles of exactly the same mass M = e 〈φ〉: the

photon, the photino, another Weyl fermion, and a real scalar. From the SUSY point of view,

these particles comprise a massive vector multiplet. At the same time, 2 real scalars and

one Weyl fermion remain massless; together, they comprise a complex scalar multiplet. And

this is it, there are no other particles.

So let us summarize: Before the Higgs mechanism, SQED had 1 massless vector multiplet

and 2 complex scalar multiplets, which after the Higgs mechanism it has 1 massive vector

multiplet and only 1 complex scalar multiplet. Thus, the supersymmetric Higgs mechanism

has ‘eaten’ the whole complex scalar multiplet and turned it into the missing components of

the massive vector multiplet.

In terms of the ordinary fields, different components of the ‘eaten’ scalar multiplet are

‘swallowed’ in different ways: One real scalar field is ‘eaten’ by the ordinary Higgs mech-

anism, another real scalar becomes massive via the D-term in the scalar potential, and a

Weyl fermion acquires a Dirac mass connecting it to the photino by means of the Yukawa

couplings. But both the Yukawa couplings and the D-term are related by SUSY to the gauge

coupling e, so we end up with equal masses for all these ‘eaten’ fields. So while they seem
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to be ‘swallowed’ in different ways, they end up ‘digested’ together and all become missing

components of the same massive vector supermultiplet.

Superfield Formalism

In the superfield formalism, SQED has one vector superfield V (x, θ, θ̄) and two chiral

superfields — A(y, θ) and B(y, θ) — together with their anti-chiral Hermitian conjugates

A(ȳ, θ̄) and B(ȳ, θ̄). The massless Lagrangian

L =

∫
d4θ

(
1
8V D

αD
2
DαV + A exp(−2eV )A + B exp(+2eV )B

)
(25)

is not only gauge invariant, but it’s invariant under the SUSY extension of the gauge sym-

metries

A′(y, θ) = A(y, θ)× e−iΛ(y,θ), B′(y, θ) = B(y, θ)× e+iΛ(y,θ),

A
′
(ȳ, θ̄) = A(ȳ, θ̄)× e+iΛ(ȳ,θ̄), B

′
(ȳ, θ̄) = B(ȳ, θ̄)× e−iΛ(ȳ,θ̄),

V ′(x, θ, θ̄) = V (x, θ, θ̄) − i

2e
Λ(y, θ) +

i

2e
Λ(ȳ, θ̄),

(26)

parametrized by an arbitrary chiral superfield Λ(y, θ) and its hermitian conjugate Λ(ȳ, θ̄).

Note that these gauge transforms may turn any non-zero chiral superfield A(y, θ) into any

other non-zero A′(y, θ) we like, and ditto for their antichiral conjugates A(ȳ, θ̄) → A
′
(ȳ, θ̄).

However, while a gauge transform can turn any A into any A′ and likewise any B into any

B′, it cannot do both at the same time. Instead, the product

M(y, θ) = A(y, θ)×B(y, θ) (27)

is a gauge-invariant chiral superfield, and we shall later use it as a modulus superfield.

Meanwhile, let’s fix a gauge. Instead of imposing a non-supersymmetric Wess–Zumino

gauge on the vector superfield, and then fix the residual ordinary gauge redundancy using

unitary gauge condition for the component scalars, let’s fix all the gauge redundancies in one

go. Instead, let’s impose the supersymmetric unitary gauge on the entire chiral parameter
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Λ(y, θ) and its conjugate. An example of such a gauge would be

A(y, θ) = const, A(ȳ, θ̄) = const, (28)

or

B(y, θ) = const, B(ȳ, θ̄) = const, (29)

(but not both!). However, for our purposes, it’s more convenient to demand

A(y, θ) ≡ B(y, θ), A(ȳ, θ̄) ≡ B(ȳ, θ̄). (30)

So let us impose this particular unitary gauge condition and identify

A(y, θ) = B(y, θ) =
√

1
2Φ(y, θ) (31)

and ditto for the conjugate field Φ. Then in terms of this field, the Lagrangian (25) becomes

L =

∫
d4θ

(
1
8V D

αD
2
DαV + ΦΦ× cosh(2eV )

)

=

∫
d4θ

(
Φ× Φ + M2 × V 2 + 1

8V D
αD

2
DαV + interactions

) (32)

where

M2 = 2e2 |〈Φ〉|2 = e2 × 〈realφ〉2. (33)

In the gauge-fixed Lagrangian (32), Φ is a massless chiral superfield — which we may use

as a modulus — while V is a massive vector superfield. Indeed, in your first homework#1

(problem 3) you shall see that the classical field equations for a vector superfield V with

Lagrangian

L =

∫
d4θ

(
M2 × V 2 + 1

8V D
αD

2
DαV

)
(34)

are D2V = D
2
V = 0 and (∂2 +M2)V = 0, while the independent component fields of V

correspond to a massive vector supermultiplet: they comprise a massive vector, a real scalar,

and two Weyl spinors — or equivalently one Dirac spinor, — all of the same mass M .
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Note that before the Higgs mechanism the theory had two chiral superfields A and B,

while after the Higgs mechanism it has only one Φ. The other chiral superfield — together

with its antichiral conjugate — got eaten by the Higgs mechanism. In the SUSY unitary

gauge, this eaten chiral superfield is directly eliminated by the gauge condition (30), and then

the massive vector superfield V gets extra degrees of freedom simply because it no longer

has gauge redundancies. This is similar to how the ordinary (non-SUSY) Higgs mechanism

eats a scalar field in the ordinary unitary gauge: the would-be Goldstone scalar is frozen by

the gauge condition, while the vector field Aµ gets a third polarization simply because it’s

massive and no longer gauge-redundant. But in the SUSY unitary gauge, the gauge condition

kills a whole chiral superfield and its conjugate, while the massive vector superfield gets a

similar bunch of extra degrees of freedom rather than just one polarization.

In other gauges, the eating of scalar multiplets by the Higgs mechanism proceeds in a

different manner, but the net result is always the same: each vector supermultiplet that

becomes massive eats a whole complex scalar supermultiplet.

Moduli Spaces and Goldstone Fields

Let me conclude these notes with a few notes about the moduli space of SQED and the

moduli space in general.

We saw that the scalar potential of SQED has a 3D space of exactly flat directions, and

after modding out by the gauge symmetry it becomes a 2D moduli space. That is, it has 2

real parameters φ and Θ, or equivalently 1 parameter Φ which we may promote to a chiral

modulus superfield Φ(y, θ). The geometry of this moduli space follows from the gauge-fixed

Lagrangian (32):

L ⊃
∫
d4θΦ× Φ, (35)

which corresponds to the Kähler function

K(Φ,Φ) = Φ× Φ (36)

and hence flat metric

g
Φ,Φ

=
∂2K

∂Φ ∂Φ
≡ 1. (37)

So at first blush, the moduli space appears to be just the complex plane C.
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The actual geometry is a bit more complicated. Although the moduli space metric is

indeed locally flat in the complex Φ coordinate, this coordinate is double-valued rather than

single-valued. Note that the SUSY unitary gauge condition

A(y, θ) ≡ B(y, θ), A(ȳ, θ̄) ≡ B(ȳ, θ̄), (38)

does not completely fix the (supersymmetrized) U(1) gauge symmetry but leaves un-fixed a

discrete subgroup Z2 ∈ U(1) corresponding to Λ = Λ = π. This subgroup acts as

A to −A, B → −B, A → −A, B → −B, (39)

which indeed preserves the conditions (38), but it also act on the moduli fields as

Φ(y, θ) → −Φ(y, θ), Φ(ȳ, θ̄) → −Φ(ȳ, θ̄). (40)

Since this Z2 is a gauge redundancy rather than a physical symmetry, the complex coordi-

nates +Φ and −Φ are redundant descriptions of the same point of the moduli space (rather

than 2 similar points related by a physical symmetry). Consequently, the moduli space

geometry is C/Z2 cone rather than the flat complex plane C.

A good single-valued gauge-invariant complex coordinate for this cone is

M def
= A× B = 1

2Φ
2. (41)

But in terms of this coordinate, the Kähler metric of the moduli space is no longer constant.

Instead,

K(M,M) = K(Φ,Φ) = ΦΦ = 2
√

MM, (42)

hence

gM,M =
∂2K

∂M ∂M =
1

2
√
MM

. (43)

Now consider the moduli spaces of more general theories. In the non-supersymmetric

field theories, continuous families of exactly degenerate vacua are always related by some
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symmetries realized in the Nambu–Goldstone mode. Indeed, without such a symmetry, the

quantum corrections (perturbative or non-perturbative) would generate different vacuum

energies for different vacua, which will spoil the degeneracy. Consequently, the massless

moduli scalar whose VEVs parametrize different vacua within the degenerate family must

be the Goldstone bosons of some spontaneously broken symmetry.

But in supersymmetric theories, there may be all kinds of moduli fields that are not

Goldstone bosons. First of all, even if a theory does have a spontaneously broken symmetry

and hence a Goldstone scalar, that Goldstone scalar would have superpartners — a fermion

and another scalar — that are not themselves Goldstone particles. For example, the massless

SQED has a global axial U(1) symmetry which acts as

A(y, θ) → e+iαA(y, θ), B(y, θ) → e+iαB(y, θ),

A(ȳ, θ̄) → e−iαA(ȳ, θ̄), B(ȳ, θ̄) → e−iαB(ȳ, θ̄).
(44)

When

〈A〉 = 〈B〉 = 1
2φe

iΘ 6= 0 (45)

this axial U(1) is spontaneously broken, with the Goldstone boson of this SSB being the real

scalar field δΘ(x); that’s why this real scalar field is exactly massless. On the other hand,

the radial scalar δφ(x) is NOT a Goldstone mode, but it is a superpartner of the Goldstone

scalar δΘ, so it is also exactly massless. And their fermionic superpartner ψ̃ = (ψχ)/
√
2 is

also exactly massless, because all members of the same supermultiplet must have exactly

the same mass. Moreover, SUSY extends the exact flatness of the scalar potential WRT

the Goldstone mode Θ into similarly exact flatness WRT to its superpartner φ. So the

degenerate vacuum space has two real moduli Θ and φ even though only one of them — the

Θ — is a Goldstone mode.

Similarly, for many other SUSY theories with some spontaneously broken continuous

symmetries, each real Goldstone scalar becomes a part of an exactly massless modulus su-

perfield. The other components of that chiral superfield — the fermion and the other scalar

— are not Goldstone fields, but they are just as massless, and the effective potential for

both scalars is similarly flat. Thus, the moduli space stemming from the SSB is always

even-dimensional.
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The moduli superfields are chiral but have no superpotential, W (Φmoduli) = 0, that’s

how their effective low-energy Lagrangian has no scalar potential at all. Instead, the moduli

have derivative interactions stemming from a non-linear Kähler metric

gi,̄(Φ,Φ
∗) =

∂2K(Φ,Φ∗)
∂Φi ∂Φ∗̄ ,

Lmoduli =

∫
d4θ K(Φ,Φ) = gi,̄(Φ,Φ

∗)×
(
∂µΦ

̄
∂µΦi + iψ

̄
σ̄µ

↔
∂µ ψ

i
)
.

(46)

The moduli also have couplings to other kinds of fields, but I shall deal with them later in

class.

Beside the Goldstone modes and their superpartners, supersymmetric theories may have

connected vacua with V = 0 (exactly) without any spontaneously broken symmetries but

simply because the superpotential W (Φ) happens to vanish along with all its first derivative

∂W/∂Φi along some continuous locus in the field space. As we shall learn in the next

few lectures, the superpotential does not receive any perturbative corrections at all, and

sometimes even the non-perturbative corrections happen to vanish. Consequently, if the

scalar potential has some classical flat directions, they will remain exactly flat to all orders of

the perturbation theory, and sometimes even non-perturbatively, which makes them moduli.

String-based models have many examples of moduli of this kind.
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