
PHY–396 T. Problem set #4. Due September 23, 2025.

This whole homework is about Ward–Takahashi identities in supersymmetric QED (su-

perfield formulation). It has 6 problems, or rather 5 problems and one reading assignment.

Update: Problem 6 is postponed to the next homework set#5.

1. Let’s start with a simple exercise about the electric current superfield

J = eA exp(+2eV )V − eB exp(−2eV )B. (1)

(a) Derive the classical equation of motion for the electron superfields A,A,B,B and

show that they lead to the current conservation equations

D2J = 0, D
2
J = 0. (2)

(b) Focus on the single-θ, single-θ̄ component of the current superfield,

J(x, θ, θ̄) = (θσµθ̄)× jµ(x) + other components (3)

and show that jµ(x) is the ordinary electric current.

(c) Verify that eqs. (2) include the ordinary current conservation, ∂µj
µ = 0.

2. Next, a reading assignment: my notes on the diagrammatic proof of Ward–Takahashi

identities in the ordinary QED.

The rest of this homework set deals with the actual SQED Ward–Takahashi identities in

the superfield form. For simplicity, take the electron field to be massless, hence no AB or

BA propagators.
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3. Let’s start with the amplitudes Sn involving a charged chiral superfield Φ = A or B, its

conjugate Φ = A or B, and n vector superfields V1, . . . , Vn. Diagrammatically

(±2e)nSn(V1, . . . , Vn) =
ΦΦ

V1
V2 Vn

(4)

To be precise, these amplitudes are amputated with respect to the vector fields V1, . . . , Vn

but not the charged fields Φ and Φ; in other words, they include the external lines for the

Φ and Φ but not for the vectors. On the other hand, these amplitudes include the external

vector fields Vi themselves but not the external Φ or Φ, and there is no overall
∫
d4θ, just

the operator between the Φ and the Φ,

amplitude = (±2e)n
∫

d4θΦ× Sn(V1, . . . , Vn) × Φ

This part only! (5)

Eq. (23) of my notes on WT identities in SQED has tree-level examples of S0, S1, and S2.

The Ward–Takahashi identities for this class of amplitudes says that if any of the vector

fields happen to be chiral or antichiral, Vi = Λ(y, θ) or Vi = Λ(ȳ, θ̄), then

Sn+1(V1, . . . , Vi = Λ, . . . , Vn+1) = −Sn(V1, . . . Vi . . . , Vn+1)× Λ,

Sn+1(V1, . . . , Vi = Λ, . . . , Vn+1) = −Λ× Sn(V1, . . . Vi . . . , Vn+1),
(6)

2

http://web2.ph.utexas.edu/~vadim/Classes/2025f/WTI.pdf#page=7


or graphically (suppressing powers of ±2e)

ΦΦ

V1 Vn

Λ

= −
ΦΦ

V1 Vn

Λ

(7)

ΦΦ

V1 Vn

Λ

= −
ΦΦ

V1 Vn

Λ

(8)

Your task in this problem is to prove the relations (6) at the tree level.

Note: this does not work diagram-by-diagram. Instead, you have to sum over all the

places the (n + 1)st “photon” Vn+1 = Λ or Vn+1 = Λ can be inserted into an amplitude

that already has n other photons.
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4. Next, consider the n–vector amputated amplitudes without any external Φ or Φ lines,

V1V2

V3 Vn

= i(2q)n
∫
d4θ Vn(V1, . . . , Vn). (9)

A very important Ward–Takahashi identity says that all these amplitudes vanish when

any one of the vectors Vi is chiral or antichiral,

∫
d4θ V(V1, . . . , Vn) = 0 when any Vi = Λ or Vi = Λ (10)

Your task in this problem is to prove this identity at the one-loop level.

Note: the proof involves cancellations between diagrams where that bad vector Vn =

Λ or Vn = Λ is inserted into different places in the charged loop relative to the other

n − 1 vectors. Assume that all the loop-momentum integrals either converge or else may

be regulated in a way that does not affect the vertices or the chiral propagators. This

assumption allows us to cancel diagrams graphically without worrying about shifting the

loop momenta qµ → qµ + pµ in divergent
∫
d4q integrals.

5. Now use the results of problems (3) and (4) as lemmas to prove that the WT relations (6)

and (10) hold true to all orders of the perturbation theory.
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6. Finally, let’s re-express the WT relations (6) and (10) in terms of completely amputated

and one-particle irreducible amplitudes

1PI

V1V2

V3 Vn

= i(±2e)n
∫
d4θ V1PI

n (V1, . . . , Vn) (11)

and

ΦΦ

1PI

V1
V2 Vn

= i(±2e)n
∫

d4θΦΓn(V1, . . . , Vn) Φ (12)

(a) Use eqs. (10) for the non-1PI amplitudes to show that when any one of the vector

superfields Vi happens to be chiral or antichiral, all the 1PI amplitudes (11) must

vanish.

As we saw in class on 9/11, it is this family of WT identities which makes SQED a

renormalizable theory.

(b) Likewise, use eqs. (6) to show that when any of the vector superfields — say, Vn

— happens to be chiral or antichiral, the 1PI amplitudes (12) must obey recursive

relations:

for n > 1,

Γ1(V = Λ) = Λ× (1 + Γ0), Γ1(V = Λ) = (1 + Γ0)× Λ, (13)
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while for n > 1

Γn(V1, . . . , Vn−1, Vn = Λ) = Λ× Γn−1(V1, . . . , Vn−1),

Γn(V1, . . . , Vn−1, Vn = Λ) = Γn−1(V1, . . . , Vn−1)× Λ.
(14)

Note that the 1+Γ0 combination in eq. (13) is related to the dressed chiral propagator

≡ S0 =
1

1 + Γ0(p)
×

iD2D
2

16p2
. (15)

As we saw in class on 9/11, these relations lead to the SQED Ward identities

all δ
(n)
1 = δ2 . (16)
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