
PHY–396 T. Problem set #6. Due October 7, 2025.

1. Back in 1996, Aharoni, Sonnenschein, Theisen, and Yankielowitz arXiv:hep-th/9611222

found a curious SU(2)×SU(2) SUSY gauge theory ‘living’ on a D3–brane probe located

near an intersection of two orientifold planes. In this problem, we study the renormaliza-

tion group flow and the IR fixed points of this gauge theory from a purely 4D QFT point

of view.

Ignoring the ‘stringy’ degrees of freedom, we have a d = 4, N = 1 SUSY gauge theory

with G = SU(2)× SU(2) and the following multiplets of chiral superfields:

A1, A2 ∈ (2,2), B1, . . . , B8 ∈ (2,1), C1, . . . , C8 ∈ (1,2). (1)

Note: in my notations I keep explicit flavor indices but suppress the gauge indices, so the

net number of chiral superfields in this theory is

(
2× 2× 2

)
A

+
(
8× 2× 1

)
B

+
(
8× 1× 2

)
C

= 8 + 16 + 16 = 40.

The theory has a superpotential

W = λ
4∑
i=1

BiA1Ci + λ
8∑
i=5

BiA2Ci . (2)

Again, the gauge indices are suppressed in this formula, but for each term here there is

only one gauge-invariant way of contracting the gauge indices.

(a) List global symmetries of this model and show that it has only 3 independent anoma-

lous dimensions: γA (same for A1 and A2), γB (same for all Bi), and γC (same for

all Ci). Allow for different gauge couplings g1 6= g2 of the two SU(2) factors.

(b) Calculate the exact βλ, βg1 , and βg2 in terms of the anomalous dimensions and show

that all three beta-functions vanish when γB = γC = −1
2γA. Argue that this leads

to a line of fixed points in the (λ, g1, g2) coupling space.
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(c) Calculate the anomalous dimensions γA, γB, and γC to one-loop order and show that

the fixed line lies at

g21 = g22 =
16

12
λ2 + O(λ4). (3)

(d) Show that this fixed line is IR-attractive. That is, if we start with some other

couplings in the UV and let the RG run to lower energies, then in the IR limit the

couplings will end somewhere on the fixed line (3).

(e) Any IR-attractive fixed point gives rise to an SCFT (super-conformal field theory),

and a line (surface, etc.) of such fixed points makes a whole family of non-trivial

SCFTs. Argue that for the model in question, this family of SCFTs includes both

weakly-coupled and strongly-coupled theories.

2. Next consider the RG flows across massive particle thresholds in SQCD with several

flavors. Let’s start with the regime where all flavors are much heavier than ΛSQCD. In

class I have argued that for this regime, the effective low-energy SYM theory has

Λ3Nc

SYM = Λ
3Nc−Nf

SQCD × det(m)×
(

a numeric

constant

)
. (4)

(a) Your first task in this problem is to verify eq. (4) for the magnitude
∣∣ΛSYM

∣∣. For

simplicity, suppose that the matrices m, ZA, and ZB are diagonal and that the

physical quark masses

Mf =
|mf |√
ZAf Z

B
f

(5)

have hierarchically different values, say M1 � M2 � · · · � MNf
. In this case, the

RG flow has Nf well-separated thresholds.

(b) Now consider SQCD that has both heavy and light flavors. Let’s integrate out the

heavy flavors only, so the low-energy effective theory includes both the gauge fields

and the light flavors. Run the RG flow to get the |Λlow| for this effective theory, then

extend it to a holomorphic formula for the Λlow in terms of the Λhigh and the masses

of the heavy quarks.
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(c) Optional exercise:

Generalize from SQCD to a SUSY gauge theory with any kind of a simple gauge

group G and “quarks” and “antiquarks” in some generic multiplets R1 + R2 + · · ·
of G. Suppose that some of these “quarks” or “antiquarks” are heavy so we may

integrate them out from the low-energy effective theory.

Show that the resulting low energy theory has

−blow × log Λlow = −bhigh × Λhigh +
∑
i

Index(Ri)× logmi , (6)

where the sum is over the heavy multiplets only, and bhigh and blow are the one-loop

beta-function coefficient of the respective high-energy and low-energy gauge theories.

Now consider the Higgs regime of SQCD with Nf ≤ Nc − 2 light flavors. As I explained

in class, in this regime we have large semi-classical squark VEVs parametrized by the

‘mesonic’ moduli
〈
Mff ′

〉
=
〈
BfAf ′

〉
. The effective low energy is the SU(Nc−Ng) SYM

coupled to these moduli, and its gauge coupling corresponds to

Λ
3(Nc−Nf )
SYM =

Λ
3Nc−Nf

SQCD

det(M)
×
(

a numeric

constant

)
. (7)

(d) Verify this formula for the magnitude |ΛSYM| by running the RG flow across all the

massive vector thresholds. For simplicity, assume diagonal matrices 〈A〉 and 〈B〉 of

squark VEVs (in some gauge) with hierarchically different eigenvalues,

〈
Qfc

〉
= δfc × φf and

〈
Q̃fc

〉
= δfc × φf , φ1 � φ2 � · · · � φNf

, (8)

so that the RG flow has well-separated thresholds.

(e) Optional exercise:

Generalize eq. (7) to any SUSY gauge theory G Higgsed down to a subgroup G′ by

VEVs of chiral superfields belonging to any multiplets of G.

In general, the massive vector superfields in G − G′ form several multiplets of G′;
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let’s label such multiplets by v and let Index′(v) denote the index of such a multiplet

WRT the unbroken G′. Show that

−blow× log Λlow = −bhigh×Λhigh − 2
∑
V

Index′(v)× log 〈Hv〉 + a numeric constant

(9)

where 〈Hv〉 is the VEV of the Higgs field that gives the vector fields in v their masses.

3. Finally, in lieu of the third problem, finish reading the 1982 Witten’s paper Constraints

On Supersymmetry Breaking that I have assigned last week.

Skim over section 9 of the paper — the group theory there is hard to follow for non-

experts. More importantly, the main result of section 9 is not quite right, as Witten

himself had clarified in his 2000 paper arXiv:hep-th/0006010. Specifically, a pure super–

Yang–Mills theory with gauge group G has Witten’s index I = C(G) — the Casimir of

the adjoint multiplet — rather than I = rank(G) + 1. For the SU(N) and Sp(N) groups

both formulae give the same answer, but for the SO(N) and the exceptional groups there

is a difference.
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