PHY-396 T. Problem set #7. Due October 14, 2025.

. First, a reading assignment: Gerard 't Hooft’s lecture notes on Monopoles, Instantons, and
Confinement, arXiv:hep-th/0010225. Focus on chapter 4 about the instantons and their

effects on the fermions.

This week you may skim over all the other chapters, but you should read them later
when you you have time. In particular, chapter 3 about the monopoles will be a reading

assignment in a future homework.

. The rest of this homework concerns SQCD with N, = N colors and massless Ny = N +1

flavors. Let’s start with the classical moduli space of this theory.
(a) Show that the classical moduli space has NJ% complex dimensions.

The holomorphic gauge invariants of the quark ch and antiquark @ f,c chiral superfields

include

mesons My = ij’cQ;/ ,

1
baryons B/ = meffl fNécl--va% o Q% , (1)
~ 1 ~ ~
and antibaryons B/ = meffl"'fNecl"'cNthcl - Qpy.cy -

But these invariants are not independent:

(b) Show that classically, the invariants (1) satisfy several constraints, namely

det(./\/l) = 0, Mff/Bf/ = 0, gf./\/lff/ = 0, minor(./\/l)ff/ = ngfl (2)

(c) Show that the space of mesons, baryons, and antibaryons which satisfy these con-
straints has precisely N]% dimensions. Consequently, it may be identified with the
classical moduli space of the SQCD with Ny = N, + 1.

In the low-energy effective theory for the moduli superfields we may treat the moduli Mz,
B, Bf as independent superfields,

Lo :/d%K(M,B,E;ME,E) +/d2eW(M,B,B) + H.c., (3)

but the VEVs (M), (B), <l§> must satisfy constraints 0W/0(any modulus) = 0.


http://arxiv.org/abs/hep-th/0010225

(d) Show that constraints on the mesonic and baryonic VEVs due to effective superpoten-

tial

Wiree = C (gf/\/lff/lﬁ'f — det(M)) , C = const (4)

are precisely the classical constraints (2).

A1—2NC

Note: C has dimension 1 — 2N, so we expect C' = X a numerical constant.

In the chiral ring language, My, B/, and B! are generators of the SQCD’s off-shell chiral ring and
egs. (2) are operatorial identities for those generators. In the low-energy effective field theory, there are
no operatorial identities; instead, egs. (2) are the on-shell chiral ring equations which follow from the
superpotential (4). Thus, the off-shell chiral ring of SQCD becomes the on-shell chiral ring of the effective
theory.

In the effective theory of the NJ% + 2Ny chiral superfields M, B/, Bf , at a generic
point of the moduli space, the superpotential (4) makes 2Ny superfields massive while the
remaining NJ% remain massless. But at at some special subspaces of the moduli space there
are more than N? massless superfields. In particular, at the special point M = B = B=0
— which corresponds to zero squark VEVs (@) = <@> =0, — all the NJ%+2N 1 low-energy

superfields remain massless.
* Optional exercise: prove this.

To study the quantum corrections to the superpotential (4) — and hence to the complex

structure of the moduli space — consider the flavor symmetries of the SQCD,

Gp = SU(Ny)L x SUNg)r x U(1)p x U(1)a x U(1)R (5)

(e) Describe how all these symmetries act on the moduli fields M s, B/, and B/ and on
the A3Ne= s,
Note: The U(1)4 and the U(1)r symmetries are anomalous, but an appropriate ad-
justment of the © angle — and hence of the phase of the complex A3Ne=Ns — would

cancel the anomaly.

The exact superpotential W (M, B, g; A3Ne=N7) for the moduli fields of the quantum theory

must be invariant under all the flavor symmetries (5).



(f) Show that this implies
W(M, B, B; ASNe=Nr) = pAL=2Ne o o ((B’fM ff,Bf’) ,det(M)) (6)

where F(z,y) is a holomorphic homogeneous function of degree 1, i.e., F(az,ay) =

aF(x,y).

Note that the classical effective superpotential (4) is indeed of the form (6) for F(x,y) =

x — y, provided we identify the overall coefficient C' as A1—2Ne.

In general, the quantum corrections due to instantons or other non-perturbative effects
should carry higher powers of the A3Ne=Ns than the classical superpotential. But for the
superpotential (6), the power of A is completely fixed by the R—symmetry, which means

that there are no non-perturbative corrections at all! Instead
W(M,B7g§ A3NC7Nf) = Wiee + 0 = A172NC X ((ngff'Bfl - det(/\/l)), (7>
and there are no quantum corrections to the classical constraints (2).

. The classical moduli space of SQCD with Ny = N, +1 has a singular point (Q) = <@> =0
where none of the symmetries are broken. In problem 1 we saw that the quantum moduli
space of the theory has the same complex structure, so it has a similar singular point
M = B = B = 0 where all the flavor symmetries remain unbroken despite the color
confinement. Or rather, all the flavor symmetries free from the color (CCF) anomalies

remain unbroken.

(a) Show that a combination of the axial symmetry U(1)4 and the R-symmetry U(1)g

which acts on the quarks, antiquarks, gluinos, and their superpartners as
AY ez‘p)\cy7 v e—i(Nc/Nf)p\I/oz’ Eja N e—i(Nc/Nf)pr}a’
~ - 8
A 5 AR Q — eip/NfQ Q — eip/NfQ (8)

is free from the color anomaly. Consequently, the net color-anomaly-free flavor sym-

metry is
Gy = SU(Np) x SUNp)pxU(1)p x U(1)pa (9)

where U(1)p is the vector-like baryon number and U(1)r4 is the symmetry (8).



At the singular point of the moduli space, the entire flavor symmetry (9) of SQCD remains
unbroken, which calls for 't Hoof’s anomaly matching condition between the elementary
and composite fermions. The elementary fermions here are the quarks, the antiquarks, and

the gluinos, while the massless composite fermions are the fermionic superpartners of the
massless moduli M, B, and B/

(b) List the flavor (9) quantum numbers of all the massless composite fermions. For

comparison, list the flavor and color quantum numbers of the elementary fermions.

(¢) And now comes the hard part: Calculate all the non-trivial flavor anomalies tr(F") and
tr(F{F’, F"}) over the elementary fermions and over the massless composite fermions

and verify that in all cases

treom(F) = treomp(F),  traem(F{F, F"}) = treomp(F{F', F"}) VE,F' F" G},
(10)



