
PHY–396 T: SUSY Solutions for problem set #3.

Problem 2:

Consider the massive Φ to Φ propagator (5). Treating the mass as a perturbation of the

massive theory, we get
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where the last equality follows from
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Similarly, spelling out the second term on the RHS of eq. (S.1), we get
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where the last equality follows from eq. (S.3) and hence
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D2 = (16p2)2 ×D2. (S.5)

In the same manner, the nth term in the expansion of the massive propagator is the combi-
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nation of 2n massless propagators and 2n− 1 mass vertices, which evaluates to
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Consequently, summing over all the terms, we get the net massive ΦΦ propagators to be
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exactly as in eq. (5).

Finally, eq. (6) for the massive ΦΦ propagator obtains in exactly the same way. Simply

repeat the above argument while reversing the directions of all the arrows and Hermitian

conjugating all the formulae, thus m ↔ m∗ and D2 ↔ D
2
.

Problem 3(b):

Consider a general superfield Feynman graph for the SQED. Suppose it has L loops, EV

external and PV internal wavy lines belonging to the vectors, EC external and PC internal

straight lines belonging to all types of chiral and antichiral superfields, and Vn vertices having

n vector lines (n = 1, 2, . . .) and 2 chiral lines; the net number of vertices is V =
∑

n
Vn.

In the Feynman gauge, the superspace derivatives come only from the chiral propagators;

there are 4 or 2 derivatives in each such propagator, depending on its type. On the other

hand, the SQED vertices do not carry negative powers of D or D, so the net number of

superderivatives is

#SD ≤ 4PC . (S.8)

This inequality is saturated if all chiral propagators are of the AA or BB types; this is

automatic when m = 0.
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Since each SQED vertex has precisely two chiral lines, any graph has

2V = 2PC + EC . (S.9)

Consequently, the number of the superderivatives is limited by

#SD ≤ 4V − 2EC .

In a loop graph, 4L of these superderivatives are needed to close the loops, i.e. to elimi-

nate the δ(4)(θ1 − θ2)
∣

∣

∣

θ1=θ2

factors in each loop. The remaining superderivatives may put

loop momenta in the numerator (via the anticommutators {Dα, Dα̇} = 2qαα̇) of the
∫

d4Lq

integral. In general, the numerator is a polynomial in loop momenta of degree

Dnum ≤ 1
2

(

#SD − 4L
)

≤ 2V − EC − 2L (S.10)

while the denominator has degree

Ddenom = 2Pall = 2PC + 2PV (S.11)

and the integral is over 4L momentum dimensions. This leads to the superficial degree of

divergence

D = 4L + Dnum − Ddenom ≤ 2L + 2V − 2Pall − EC . (S.12)

By the Euler theorem L+ V − Pall = 1, which gives us

D ≤ 2 − EC . (7)

This result limits the divergent amplitudes of SQED to just two classes: (9) Two scalars

(of opposite charges) and any number of vectors, and (8) just the vectors without any scalars

at all. Both classes are infinite, which seems too much for a renormalizable theory. However,

conservation of the supersymmetrized electric current leads to powerful Ward identities which

drastically reduce the number of independent divergences from infinity to just two: δZA =

δZB and δe. I shall explain how this works later in class.
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