PHY-396 T: SUSY Solutions for problem set #3.

Problem 2:
Consider the massive ® to ® propagator (5). Treating the mass as a perturbation of the

massive theory, we get
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where the last equality follows from
D*D’D? = 16p x D (S.3)

Similarly, spelling out the second term on the RHS of eq. (S.1), we get
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where the last equality follows from eq. (S.3) and hence
D*D°D?D’D? = (16p?)? x D2 (S.5)

In the same manner, the n'" term in the expansion of the massive propagator is the combi-



nation of 2n massless propagators and 2n — 1 mass vertices, which evaluates to
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Consequently, summing over all the terms, we get the net massive ®® propagators to be
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exactly as in eq. (5).

Finally, eq. (6) for the massive ®® propagator obtains in exactly the same way. Simply
repeat the above argument while reversing the directions of all the arrows and Hermitian

conjugating all the formulae, thus m < m* and D? < D

Problem 3(b):

Consider a general superfield Feynman graph for the SQED. Suppose it has L loops, Ey
external and Py internal wavy lines belonging to the vectors, E¢ external and P internal
straight lines belonging to all types of chiral and antichiral superfields, and V;, vertices having

n vector lines (n =1,2,...) and 2 chiral lines; the net number of vertices is V =" V.

In the Feynman gauge, the superspace derivatives come only from the chiral propagators;
there are 4 or 2 derivatives in each such propagator, depending on its type. On the other
hand, the SQED vertices do not carry negative powers of D or D, so the net number of

superderivatives is

#SD < 4Pc. (S.8)

This inequality is saturated if all chiral propagators are of the AA or BB types; this is

automatic when m = 0.



Since each SQED vertex has precisely two chiral lines, any graph has
2V = 2Pc + Ec. (S.9)
Consequently, the number of the superderivatives is limited by
#SD < 4V — 2E¢.

In a loop graph, 4L of these superderivatives are needed to close the loops, i.e. to elimi-
nate the 6 (0; — 6y)

- factors in each loop. The remaining superderivatives may put
1=U2

loop momenta in the numerator (via the anticommutators { Dy, Da} = 2qaa) of the [d*Eq

integral. In general, the numerator is a polynomial in loop momenta of degree
Duam < %(#SD - 4L> < 9V — Eo — 2L (S.10)
while the denominator has degree
Dgenom = 2P = 2Fc + 2Py (S.11)

and the integral is over 4L, momentum dimensions. This leads to the superficial degree of

divergence
D == 4:L + Dnum - Ddenom S 2L _'_ 2V - 2Pa11 - EC . (S.l2)
By the Euler theorem L + V — P, = 1, which gives us

D <2 - E¢-. (7)

This result limits the divergent amplitudes of SQED to just two classes: (9) Two scalars
(of opposite charges) and any number of vectors, and (8) just the vectors without any scalars
at all. Both classes are infinite, which seems too much for a renormalizable theory. However,
conservation of the supersymmetrized electric current leads to powerful Ward identities which
drastically reduce the number of independent divergences from infinity to just two: 074 =

0Zp and de. I shall explain how this works later in class.



