
PHY–396 T: SUSY Solutions for problem set #5.

Problem 6(a):

Let’s start with eqs. (10) for the 1PI purely photonic amplitudes. In a diagram without external

charged lines Φ or Φ, all charged propagators form closed loops, so cutting any one such

propagator cannot severe the loop. This means that the one-particle-irreducibility of a diagram

depends only on the internal photons connecting the charged loops to each other, but not on

the charged loops themselves or on the external photons. So if we add a new external photon

to an 1PI diagram, we would always get a 1PI diagram regardless of where we attach the new

photon, OOH, no such attachment would change a non-1PI diagram into a 1PI diagram.

In problems (4) and (5) we have proved the Ward identities (10) not just for the net n-vector

amplitudes but also for for partial sums over much smaller sets of diagrams, namely over all

possible attachments of a bad photon to any particular n− 1 diagram. Since all such sets are

either all-1PI or none-1PI, summing only over the 1PI sets immediately gives us eqs. (11) for

the net 1PI n-vector amplitudes V1PI
n (V1, . . . , VN ).

Problem 6(b):

Beyond the tree level, the un-amputated S0 amplitude is the dressed chiral propagator

iS0(p) ≡ = +

1PI

+

1PI 1PI

+ · · ·

= iΠa + iΠa × iΓ0 × iΠa + iΠa × iΓ0 × iΠa × iΓ0 × iΠa + · · ·

=
iΠa

1 + ΠaΓ0(p)Πa

≡
1

1 + Γ̂0(p)
×

iD2D
2

16p2 + i0

(15)

where Γ̂0 = ΠaΓ0Πa is indistinguishable from the 1PI 2–point bubble Γ0 itself when sandwiched

between the chiral Φ on the left and the antichiral Φ on the right.

The un-amputated 1–vector amplitude iS1(V ) comprises one 1PI dressed vertex iΓ1(V ) and
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two dressed charged propagators,

= 1PI (S.1)

i. e., iS1(p1, p2;V ) = iS0(p1)× iΓ1(p1, p2;V )× iS0(p2). (S.2)

When the vector field V happens to be chiral, eq. (6) tells us that

S1(p1, p2;V = Λ) = −S0(p1)× Λ. (S.3)

Combining this formula with eq. (S.2) and eq. (15) for the S0, we have

Πa

1 + Γ̂0(p1)
× Γ1(p1, p2;V = Λ)×

Πa

1 + Γ̂0(p2)
= +

Πa

1 + Γ̂0(p1)
× Λ (S.4)

and consequently

Πa × Γ1(p1, p2;V = Λ)×Πa = Λ× (1 + Γ̂0(p2)). (S.5)

In the context of
∫
d4θΦΓ1(V )Φ, this formula is equivalent to

Γ1(p1, p2;V = Λ) = Λ× (1 + Γ0(p2)). (13a)

Similarly, when the vector field V happens to be antichiral, we have

S1(p1, p2;V = Λ) = −Λ× S0(p2) (S.6)

and consequently

Πa

1 + Γ̂0(p1)
× Γ1(p1, p2;V = Λ)×

Πa

1 + Γ̂0(p2)
= +Λ×

Πa

1 + Γ̂0(p2)
(S.7)
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Πa × Γ1(p1, p2;V = Λ)× Πa = (1 + Γ̂0(p1))× Λ, (S.8)

which is equivalent to

Γ1(p1, p2;V = Λ) = +Γ0(p1)× Λ. (13b)

Finally, let’s prove eqs. (14) for multi-vector amplitudes. The two-vector un-amputated

amplitude comprises two kinds of diagrams,

= 1PI + 1PI 1PI

(S.9)

while for n > 2 vectors there are even more possibilities:

n

= 1PI

n

+ 1PI

k

1PI

n− k

+ 1PI

k1

1PI

k2

1PI

n− k1 − k2

+ · · ·

= 1PI

n

+ 1PI

n− kk

(S.10)

The last line in this graphic summary gives a recursive formula for the Sn in terms of the 1PI
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amplitudes and the Sk with k < n. Specifically,

Sn(V1, . . . , Vn) = −S0 × Γn(V0, . . . , Vn)× S0

−

n−1∑

k=1

∑

partitions

Sk(k vectors)× Γn−k(n− k vectors)× S0

(S.11)

where the second sum is over which k vectors out of V1, . . . , Vn appear in the Sk while the rest

appear in the Γn−k; the minus sign on the RHS follow from the i factors in each amplitude,

dressed propagators, or dressed vertex.

Eqs. (S.11) give rise to an induction-in-n proof that eqs. (6) imply eqs. (14) for the 1PI

amplitudes. To prove the induction base for n = 2, consider what happens to the two-vector

amplitude

S2(V1, V2) = −S0 × Γ2(V1, V2)×S0 − S0 ×Γ1(V1)×S1(V2) − S0 ×Γ1(V2)×S1(V1) (S.12)

when one of the vectors happens to be chiral, say V2 = Λ. In this case, in the second term

on the RHS we have S1(V2 = Λ) = −S0 × Λ while for the third term eqs. (13a) gives us

Γ1(V2 = Λ) = +Λ× (1 + Γ0). At the same time, on the LHS we have

S(V1, V2 = Λ) = −S1(V1)× Λ = +S0 × Γ1(V1)× S0 × Λ. (S.13)

Plugging all these formulae into eq. (S.12), we obtain

+S0 × Γ1(V1)× S0 × Λ = − S0 × Γ2(V1, V2 = Λ)× S0

+ S0 × Γ1(V1)× S0 × Λ

− S0 × Λ(1 + Γ0)× S1(V1)

(S.14)

where the second term on the RHS cancels against the LHS. The remaining terms give us

S0×Γ2(V1, V2 = Λ)×S0 = −S0×Λ(1+Γ0)×S1(V1) = +S0×Λ(1+Γ0)×S0Γ1(V1)S0 (S.15)

where in the context of
∫
d4θΦΓΦ,

Γ2(V1, V2 = Λ) ∼= Λ× (1 + Γ0)S0 × Γ1(V1)

∼= Λ× (1 + Γ̂0)S0 × Γ1(V1) 〈〈 since Λ is chiral just like Φ 〉〉

= Λ× Πa × Γ1(V1) 〈〈 in light of eq. (15) 〉〉

∼= Λ× Γ1(V1)

(S.16)
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in accordance with eq. (14).

That was the induction base for n = 2. Now, we need to prove that if eqs. (14) holds true

for all n′ < n then they also hold true for n. Our starting point is the recursion formula (S.11)

for the n-vector amplitude S(V1, . . . , Vn). Suppose Vn = Λ, and let’s split the sum over the

partitions of n vectors (into k arguments of the Sk and n− k arguments of the Γn−k) into two

sums according to whether the Vn = Λ is an argument of the Sk or the Γn−k, thus

Sn(V1, . . . , Vn−1; Λ) = −S0 × Γn(V0, . . . , Vn−1; Λ)× S0

−

n−1∑

k=1

∑

selections

Sk(V, . . . , V )× Γn−k(V, . . . , V ; Λ)× S0

−
n−1∑

k=1

∑

selections

Sk(V, . . . , V ; Λ)× Γn−k(V, . . . , V )× S0 .

(S.17)

By the induction assumption, on the second line here

Sk(V, . . . , V )×Γn−k(V, . . . , V ; Λ)×S0 = +Sk(V, . . . , V )×Λ × Γn−k−1(V, . . . , V )×S0, (S.18)

while on the third line of (S.17) we may use eq. (6) to rewrite

Sk(V, . . . , V ; Λ)×Γn−k(V, . . . , V )×S0 = −Sk−1(V, . . . , V )× Λ×Γn−k(V, . . . , V )×S0 . (S.19)

Due to opposite signs in eqs. (S.18) and (S.19), these terms cancel each other for appropriate

partitions of the (V1, . . . , Vn−1; Λ) into arguments of the Sk and Γn−k. In the context of the big

sums in eq. (S.17), the only terms that survive this cancellation are the k = n− 1 term on the

second line and the k = 1 term on the third line, thus

Sn(V1, . . . , Vn−1; Λ) = −S0 × Γn(V0, . . . , Vn−1; Λ)× S0

− Sn−1(V1, . . . , Vn−1)× Γ1(Λ)× S0

− S1(Λ)× Γn−1(V1, . . . , Vn−1)× S0 .

(S.20)

Applying eqs. (6) to the LHS here and to the S1(Λ) in the third term on the RHS, and also
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applying eq. (13) to the second term on the RHS, we rewrite eq. (S.20) as

−Sn−1(V1, . . . , Vn−1)× Λ = −S0 × Γn(V0, . . . , Vn−1; Λ)× S0

− Sn−1(V1, . . . , Vn−1)× Λ× (1 + Γ0)S0

+ S0 × Λ× Γn−1(V1, . . . , Vn−1)× S0

(S.21)

where the LHS and the second term on the RHS cancel each other in the context of an operator

between Φ and Φ,

Sn−1(V1, . . . , Vn−1)× Λ ∼= Sn−1(V1, . . . , Vn−1)× Λ× (1 + Γ0)S0 . (S.22)

Consequently,

S0 × Γn(V0, . . . , Vn−1; Λ)× S0
∼= +S0 × Λ× Γn−1(V1, . . . , Vn−1)× S0 (S.23)

and hence in the context of
∫
d4θΦΓΦ,

Γn(V0, . . . , Vn−1; Λ) ∼= Λ× Γn−1(V1, . . . , Vn−1). (16a)

This completes the proof-by-induction of eqs. (14a) for the Vn = Λ. The antichiral case Vn = Λ

is left out as an exercise for the students.

PS: Strictly speaking, the gray bubbles labeled ‘1PI’ in eq. (S.10) are only one-charged–particle

irreducible, but they might be severed by cutting a vector propagator, for example

1PI

1PI 1PI

(S.24)

However, when one adds a bad photon Vn+1 = Λ or Λ to a diagram like this, the bad photon

has to be attached to the lower bubble; thanks to eqs. (10), attachments to the upper bubbles
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cancel out. Consequently, as far as eqs. (14) for the diagrams like (S.24) are concerned, we

may disregard the upper bubbles with all the vectors attached to them and focus on the lower

bubble only, thus

1PI

Λ

= 1PI

Λ

(S.25)

In other words, once we have proved the Ward identities (16) for the one-charged–particle

irreducible amplitudes, the completely-1PI amplitudes must also satisfy the same identities (16).
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