PHY-396 T: SUSY Solutions for problem set #5.

Problem 6(a):

Let’s start with eqs. (10) for the 1PI purely photonic amplitudes. In a diagram without external
charged lines ® or ®, all charged propagators form closed loops, so cutting any one such
propagator cannot severe the loop. This means that the one-particle-irreducibility of a diagram
depends only on the internal photons connecting the charged loops to each other, but not on
the charged loops themselves or on the external photons. So if we add a new external photon
to an 1PI diagram, we would always get a 1PI diagram regardless of where we attach the new

photon, OOH, no such attachment would change a non-1PI diagram into a 1PI diagram.

In problems (4) and (5) we have proved the Ward identities (10) not just for the net n-vector
amplitudes but also for for partial sums over much smaller sets of diagrams, namely over all
possible attachments of a bad photon to any particular n — 1 diagram. Since all such sets are
either all-1PI or none-1PI, summing only over the 1PI sets immediately gives us eqgs. (11) for

the net 1PI n-vector amplitudes VIFL(Vy, ... V).

Problem 6(b):

Beyond the tree level, the un-amputated Sy amplitude is the dressed chiral propagator
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where [y = I1,ToI1, is indistinguishable from the 1PI 2—point bubble Iy itself when sandwiched
between the chiral ® on the left and the antichiral ® on the right.

The un-amputated 1-vector amplitude iS; (V') comprises one 1P1 dressed vertex iI'1 (V') and



two dressed charged propagators,
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i.e., i8S1(p1,p; V) = iSo(p1) x il1(p1,p2; V) X iSo(p2)- (5.2)
When the vector field V' happens to be chiral, eq. (6) tells us that
Si(p1,p2;V=A) = =So(p1) x A. (S.3)
Combining this formula with eq. (S.2) and eq. (15) for the Sy, we have
IT IT IT
— 2 xTilpr,pV=A)x —2— = +——2 _xA (S.4)
1+ To(p1) 1+ To(p2) 1+ To(p1)
and consequently
o x Ti(pr,pz V =A) x Iy = A x (14To(p2)). (S.5)
In the context of [d*0®I'y(V)®, this formula is equivalent to
Fi(pr,pasV =A) = Ax (1+To(p2)). (13a)
Similarly, when the vector field V' happens to be antichiral, we have
Si(p1,p2;V =A) = —A x So(pa) (5.6)
and consequently
I1 — IT — IT
X Ty(ppa V= K) X e = 4R (S.7)
1+ To(p1) 1+ To(p2) 1+ To(p2)
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IT, x Fl(p1,p2; V= K) x I, = (1 + fo(pl)) X K? (88)

which is equivalent to

Di(p1,p2; V =A) = 4+To(p1) x A. (13b)

Finally, let’s prove eqs. (14) for multi-vector amplitudes. The two-vector un-amputated

amplitude comprises two kinds of diagrams,

(S.10)

The last line in this graphic summary gives a recursive formula for the S,, in terms of the 1PI



amplitudes and the S with & < n. Specifically,

Sn(Vl,...,Vn) = —30 X Fn(VO, . ,Vn) X S()
n—1
S.11
— Z Z Sk (k vectors) x 'y, _x(n — k vectors) x Sy (5:11)

k=1 partitions

where the second sum is over which k& vectors out of Vi,...,V,, appear in the S; while the rest
appear in the I',_z; the minus sign on the RHS follow from the ¢ factors in each amplitude,

dressed propagators, or dressed vertex.

Egs. (S.11) give rise to an induction-in-n proof that eqgs. (6) imply egs. (14) for the 1PI
amplitudes. To prove the induction base for n = 2, consider what happens to the two-vector

amplitude
82(‘/1, VQ) = —SO X FQ(Vl, VQ) X S() — 30 X Fl(Vl) X Sl(VQ) — 30 X Fl(‘/g) X Sl(Vl) (8.12)

when one of the vectors happens to be chiral, say Vo = A. In this case, in the second term
on the RHS we have §1(Va = A) = —Sp x A while for the third term egs. (13a) gives us
(Vo =A)=+Ax (1+Tg). At the same time, on the LHS we have

S(Vl,VQ = A) = —Sl(Vl) x N = +85) x Fl(Vl) x Sp x A. (8.13)

Plugging all these formulae into eq. (S.12), we obtain
+8p X XA = —S()XFQ(Vl,VQ:A)XS()

+ BB ecST X A (.14)

— 8() X A(l + F()) X Sl(Vl)

where the second term on the RHS cancels against the LHS. The remaining terms give us
Sp X FQ(‘/l, Vo = A) xSy = —Sp X A(1+F0) X Sl(Vl) = +85p % A(l —I—Fo) XSOF:[(%)SO (815)

where in the context of [d*0 ®T'®,
Lo(Vi,Vo=A) =2 Ax (1+T0)Sy x I'1(V4)
A x (1+T0)Sy x I'1(V1) {(since A is chiral just like @ ))
= AxIl, xI'1(Vg) {(in light of eq. (15) )
=~ AxTh (W)
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(S.16)



in accordance with eq. (14).

That was the induction base for n = 2. Now, we need to prove that if eqs. (14) holds true
for all n < n then they also hold true for n. Our starting point is the recursion formula (S.11)
for the n-vector amplitude S(Vi,...,V,). Suppose V,, = A, and let’s split the sum over the
partitions of n vectors (into k£ arguments of the Sy and n — k arguments of the I';, ) into two

sums according to whether the V,, = A is an argument of the Si or the I';,_, thus

Sn(‘/lw . 'aVn—l;A) = _SO X Fn(‘/(b . 'aVn—l;A) X SO

n—1
=Y Y SV V) xTug(Vi VA x S
k=1 selections (817)

n—1
=3 D SV L VM) X Tk (Vi V) X S

k=1 selections

By the induction assumption, on the second line here

Se(V,o. V)X (V, .,V A) xSy = +Sk(V, .., V) XA X T, 1(V, ..., V) xS, (S.18)
while on the third line of (S.17) we may use eq. (6) to rewrite

SV, VN XT kg (Voo V) xSy = =Sk 1 (Voo V) x Ax T i (V,..., V) xSp. (S.19)

Due to opposite signs in egs. (S.18) and (S.19), these terms cancel each other for appropriate
partitions of the (Vi,...,V,_1; A) into arguments of the S; and I';,_j. In the context of the big
sums in eq. (S.17), the only terms that survive this cancellation are the £k = n — 1 term on the

second line and the k = 1 term on the third line, thus

Sn(Vl,...,Vn_l;A) = —SO X Fn(‘/b,...,vn_l;/\) X 30
— Sp—1(V1, .., V1) x T'i(A) x S (S.20)
— S1(A) x Tt (Va0 Vi) X 8o

Applying egs. (6) to the LHS here and to the S;(A) in the third term on the RHS, and also



applying eq. (13) to the second term on the RHS, we rewrite eq. (S.20) as

_Sn—l(‘/la . --aVn—l) x A = —80 X Fn(‘/(), . ..,Vn_l;A) X S()
— Spo1 (V1o Vm1) x A x (14 T)S (S.21)
+ S()XAXFn_l(‘/l,...,Vn_l)XSO

where the LHS and the second term on the RHS cancel each other in the context of an operator

between ® and ,
Sn—1(V1, ooy V) XA =2 S 1(Vhy o, Vie1) X A x (14 T9)So - (S.22)
Consequently,
Sox (Vo oo, V13 A) x Sop = +So x A X Ty (Vi .., V1) X So (S.23)
and hence in the context of [ d*0 T,
Cn(Vo, ., Ves A) 2 Ax Ty (Va, .o, Visr). (16a)

This completes the proof-by-induction of egs. (14a) for the V;, = A. The antichiral case V;, = A

is left out as an exercise for the students.

PS: Strictly speaking, the gray bubbles labeled ‘1PI” in eq. (S.10) are only one-charged—particle

irreducible, but they might be severed by cutting a vector propagator, for example

(S.24)

However, when one adds a bad photon V,,.1 = A or A to a diagram like this, the bad photon
has to be attached to the lower bubble; thanks to egs. (10), attachments to the upper bubbles



cancel out. Consequently, as far as eqs. (14) for the diagrams like (S.24) are concerned, we
may disregard the upper bubbles with all the vectors attached to them and focus on the lower

bubble only, thus

(S.25)

A

In other words, once we have proved the Ward identities (16) for the one-charged—particle

irreducible amplitudes, the completely-1PI amplitudes must also satisfy the same identities (16).



