
PHY–396 T: SUSY Solutions for problem set #6.

Problem 1(a):

Let’s start with the continuous global symmetries

Gclassical
global =

(

SU(4)× U(1)X × U(1)Y

)

1
×
(

SU(4)× U(1)X × U(1)Y

)

2
× U(1)R (S.1)

which act on the A, B, and C fields according to the following charge table

fields

QN SU(4)1 U(1)X1 U(1)Y 1 SU(4)2 U(1)X2 U(1)Y 2

A1 1 +2 0 1 0 0

B1, . . . , B4 4 −1 +1 1 0 0

C1, . . . , C4 4̄ −1 −1 1 0 0

A2 1 0 0 1 +2 0

B5, . . . , B8 1 0 0 4 −1 +1

C5, . . . , C8 1 0 0 4̄ −1 −1

(S.2)

Here QN — the quantum numbers — refer to the abelian charges or to the non-abelian multi-

plets (in boldface). As to the R symmetry,

all scalars φ have R = +2
3 ,

all matter fermions ψα have R = −1
3 ,

all gauginos λα have R = +1,

all vectors Vµ have R = 0.

(S.3)

In the quantum theory we must check the abelian classical symmetries for the gauge anomalies

∑

fermions

(global charge)× Index
[

gauge SU(2)1 or SU(2)2

]

. (S.4)

It is easy to see that the Y1 and Y2 charges are anomalous WRT both SU(2) factors but the

combination Y = Y1−Y2 is anomaly-free. Also, the X1, X2, and R charges are non-anomalous.
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Thus, the quantum theory has continuous global symmetry

Gquantum
global =

(

SU(4)× U(1)X

)

1
×

(

SU(4)× U(1)X

)

2
× U(1)Y × U(1)R . (S.5)

As to the discrete symmetries, we have the anomaly-free Z8 subgroup of the U(1)Y 1+Y 2

which multiplies all the Bi fields by e2πi/8 and all the Ci by e−2πi/8. More importantly, we

have a Z2 symmetry that swaps fields appearing in the first term of the superpotential (2) with

fields appearing in the second term,

Z2 : A1 ↔ A2 , Bi ↔ Bi±4 , Ci ↔ Ci±4 . (S.6)

This symmetry assures that the A1 and the A2 fields have the same anomalous dimension γA.

Also, together with the SU(4)1 × SU(4)2 it makes sure that all eight Bi fields have the same

anomalous dimension γB and all eight Ci fields have the same anomalous dimension γC .

Problem 1(b):

Thanks to SUSY, there is no counterterm δλ for the Yukawa coupling. Consequently, its

renormalization follows solely from the wave-function renormalization of the chiral superfields,

thus

βλ = λ× (γA + γB + γC). (S.7)

As to the gauge couplings, their beta-function are given by the Novikov–Shifman–Vainshtein–

Zaharov equations

βg1 =
g31

16π2 − 4g21
×

[

−3× 2 + 2× 2× 1
2 × (1− 2γA) + 4× 2× 1

2 × (1− 2γB)
]

= −
g31

4π2 − g21
× (γA + 2γB)

(S.8)

and similarly

βg2 =
g32

16π2 − 4g22
×

[

−3× 2 + 2× 2× 1
2 × (1− 2γA) + 4× 2× 1

2 × (1− 2γC)
]

= −
g32

4π2 − g22
× (γA + 2γC).

(S.9)

Equations (S.7), (S.8), and (S.9) give us exact beta-functions (true to all orders of the pertur-

bation theory) in terms of the anomalous dimensions. Hence, the fixed points where all three

2



beta–functions vanish, βλ = βg1 = βg2 = 0 lie wherever

γA + γB + γC = γA + 2γB = γA + 2γC = 0, (S.10)

or equivalently

γB(λ, g1, g2) = γC(λ, g1, g2) = −1
2γA(λ, g1, g2). (S.11)

Note that the three eqs. (S.10) are not independent, hence only two eqs. (S.11).

Viewed as equations for the couplings λ, g1 and g2 — on which the anomalous dimensions

depend — the two eqs. (S.11) define a line in the 4D coupling space. All point on this line are

fixed points of the renormalization group.

Preamble to problem 1(c):

A few weeks ago we saw in class that in the Wess–Zumino model the chiral superfield Φ has

anomalous dimension

γWZ = +
|λ|2

32π2
+ O(|λ4|) (S.12)

where λ is the canonically normalized Yukawa coupling. This formula has a straightforward

generalization to a theory of several chiral superfields Φi with Yukawa couplings λijk, namely

γYukawas[Φi] = +
1

32π2

∑

jk

|λijk|
2 + higher loops. (S.13)

In this formula, we should sum over all quantum numbers hiding behind the indices j and k,

such as the species (e.g., A, B, or C), the ‘flavor’ (e.g., i of Ai, Bi, or Ci) and the color — or

whatever the gauge index may be appropriate for the field in question (e.g., the colors of both

SU(2) groups for the Ai fields). Also, if j 6= k we should include both (i, k) and (k, j) pairs

into the sum — which gives us an overall factor of 2.

Now consider the effect of the gauge couplings. In SQED, we saw in class that

γSQED[Φi] = −
e2q2i
8π2

+ O(e4). (S.14)

Generalization to the non-abelian gauge theories is quite straightforward: For a simple gauge
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group G,

γgauge[Φi] = −
g2

8π2
× C2(Φi) + higher loops (S.15)

where C2 is a quadratic Casimir of a gauge multiplet to which the Φi fields belongs (e.g.,

C2 = I(I + 1) for an SU(2) multiplet of isospin I), and g is normalized conventionally (as

in the Standard Model or GUTs, not as in the Superspace book). More generally, for a gauge

symmetry G =
∏

ν Gν which has several simple (or abelian) factorsGν with respective couplings

gν , we have

γgauge[Φi] = −
1

8π2

∑

ν

g2ν × C
(Gν)
2 (Φi) + higher loops. (S.16)

Finally, in a generic theory that has both gauge and Yukawa couplings, the one-loop anoma-

lous dimensions are

γnet1 loop[Φi] = γYukawa1 loop [Φi] + γgauge1 loop [Φi] = +
1

32π2

∑

jk

|λijk|
2 −

1

8π2

∑

ν

g2ν×C
(Gν )
2 (Φi). (S.17)

Problem 1(c):

Now let’s apply eqs. (S.17) for the theory in question. The gauge group is SU(2) × SU(2),

and WRT each factor, the A,B,C fields are either doublets (C2 = 3
4) or singlets (C2 = 0).

Specifically, Ai ∈ (2, 2), Bi ∈ (2, 1), Ci ∈ (1, 2), hence the gauge couplings’ contributions to

the one-loop anomalous dimensions are

γgauge1 loop [A] = −
3

32π2
×
(

g21 + g22
)

, γgauge1 loop [B] = −
3

32π2
× g21, γgauge1 loop [C] = −

3

32π2
× g22.

(S.18)

Now consider the Yukawa couplings’ contributions (S.13). For the superpotential (2) all

non-zero couplings have the same value = λ, hence

γYukawa1 loop [Φi] = +
|λ|2

32π2
×#(j, k) pairs for which λijk 6= 0. (S.19)

Let’s start with Φi being an A field; for the sake of definiteness, let Φi = A1 of some fixed

SU(2)× SU(2) colors (c1, c2). Then we get a non-zero Yukawa coupling for Φj = Bf of flavor
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f = 1, 2, 3, 4 and color c1 and Φk = Cf (same f) of color c2. Summing over f = 1, 2, 3, 4 gives

us four (j, k) pairs, times two for the j ↔ k exchange. Altogether, there are eight (j, k) pairs,

hence

γYukawa1 loop [A] = +
|λ|2

32π2
× 8. (S.20)

Now let Φi be a B field, say Φi = B1 of color c1. Then we get λijk 6= 0 for Φj = C1 (note same

flavor) and some color c2 = 1, 2 and Φk = A1 of colors (c1, c2). All the flavors here are fixed,

and so is the SU(2)1 color c1, but the SU(2)2 color c2 is not, hence summing over the c2 = 1, 2

gives us two (j, k) pairs. Multiplying by two for the j ↔ k exchange, we get four pairs, thus

γYukawa1 loop [B] = +
|λ|2

32π2
× 4. (S.21)

Similarly,

γYukawa1 loop [C] = +
|λ|2

32π2
× 4. (S.22)

Combining these Yukawa contributions with the gauge contributions (S.18), we arrive at

the net one-loop anomalous dimensions

γnet1 loop[A] =
8|λ|2 − 3g21 − 3g22

32π2
,

γnet1 loop[B] =
4|λ|2 − 3g21

32π2
,

γnet1 loop[C] =
4|λ|2 − 3g22

32π2
.

(S.23)

It remains to plug in these anomalous dimensions into the fixed-point equations

γB(λ, g1, g2) = γC(λ, g1, g2) = −1
2γA(λ, g1, g2). (S.11)

Clearly, the first equation γB = γC requires g1 = g2. In fact, by symmetry between the two

SU(2) gauge groups, this condition is exact to all orders of the perturbation theory. As to the

5



second equation (S.11),

32π2(γA + γB + γC) = 16|λ|2 − 6g21 − 6g22 + higher loops, (S.24)

hence the fixed points lie along the line

g21 = g22 =
16

12
|λ|2 + O(|λ4|/16π2). (3)

Quod erat demonstrandum.

Problem 1(d):

Let’s take a closer look at the beta-functions

βg1 = −
g31

4π2 − g21
× (γA + 2γB), (S.8)

βg2 = −
g32

4π2 − g21
× (γA + 2γC), (S.9)

βλ = +λ× (γA + γB + γC), (S.7)

and the one-loop anomalous dimensions (S.23). Suppose we start at some point in the coupling

space where g1 > g2. In this case, eqs. (S.23) yield γB < γC , hence according to eqs. (S.8)

and (S.9) β1 > β2. This means that the difference g1 − g2 increases in the UV direction but

decreases in the IR direction. Likewise, had we started with g2 > g1, the difference g2 − g1

would also decrease in the IR direction. Thus, regardless of our starting point in the coupling

space, the RG flow would bring the gauge couplings g1 and g2 closer to each other in the IR,

and ultimately — in the very deep IR — we would end up with g1 = g2.

Now the other direction in which we may deviate from the fixed line (3). Let start with the

Yukawa coupling too weak compared to the gauge couplings, i.e. g21 = g22 >
4
3 |λ|

2. In this case,

γA + 2γB = γA + 2γC = γA + γB + γC < 0 (S.25)

and hence βg1 = βg2 > 0 while βλ < 0, which means that in the IR direction the Yukawa

coupling becomes stronger while the gauge couplings become weaker. Likewise, if we start the
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RG flow with the Yukawa coupling too strong relative to the gauge couplings, i.e. g21 = g22 <

4
3 |λ|

2, then

γA + 2γB = γA + 2γC = γA + γB + γC > 0 (S.26)

and hence βg1 = βg2 < 0 while βλ > 0: this time, the Yukawa coupling becomes weaker in

the IR direction while the gauge couplings become stronger. In either case, the gauge and

Yukawa coupling converge towards each other — or rather towards the fixed line (3) — in the

IR direction. And that’s what makes the fixed line (3) IR–attractive.

Problem 1(e):

The line (3) or IR-attractive fixed points gives rise to a whole family of non-trivial SCFTs.

At one end of the fixed line (3), all 3 couplings g1, g2, and λ are weak and all the anomalous

dimensions are small. But apart from this weakly-coupled region, the fixed line (3) extends to

strong, or at least O(1) couplings. In this regime, the perturbation theory breaks down and

we no longer have accurate formulae for the anomalous dimensions, or even for the g1 = g2 as

a function of |λ — the fixed line in the 3D coupling space probably isn’t straight (outside the

weak-couplings region), and we don’t know its precise shape. But it certainly does go somewhere

in the strongly-coupled region, so our family of the SCFTs includes both weakly-coupled and

strongly-coupled theories.

Problem 2(a–b), preamble:

For an hierarchical pattern of quark masses, we may integrate out one heavy flavor at a time.

So consider an effective theory#k for the energy range Mf ≫ E ≫ Mf+1: From this EFT,

k of the heaviest flavors have already been integrated out while Nf − k lighter flavors remain

in the theory. Let τk be the Wilsonian gauge coupling of that EFT and Λk its dimensional

transmutant,

Λ
3Nc−Nf+k
k = (UV cutoff)3Nc−Nf+k × exp(2πiτk). (S.27)

In particular, for k = Nf the EFT#Nf is the low-energy SYM without any flavors at all. Also,

we may identify the original SQCD as EFT#0.
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In a moment, I am going to show that integrating out one quark flavor at a time leads to

Λ
3Nc−Nf+k+1
k+1 = Λ

3Nc−Nf+k
k ×mk+1 ×

(

numeric

factor

)

. (S.28)

Once we establish this formula, we may use it Nf times to get

Λ3Nc

k=Nf
= Λ

3Nc−Nf

k=0 ×

Nf
∏

f=1

mf ×

(

numeric

factor

)

(S.29)

and hence

Λ3Nc

SYM = Λ
3Nc−Nf

orig × det(m)×

(

numeric

factor

)

, (4)

which verifies part (a). Also, for part (b), we integrate the k heavy flavors and then stop, so

applying eq. (S.28) k times we get

Λ
3Nc−Nf+k
k = Λ

3Nc−Nf

orig ×

k
∏

f=1

mf ×

(

numeric

factor

)

. (S.30)

Problem 2(a–b), deriving eq. (S.28):

Let’s start with the magnitudes of the two sides of eq. (S.28). In the EFT#k for E >∼Mf , the

RG flow is governed by the NSVZ (Novikov–Shifman–Vainshtein–Zaharov) equation

8π2

g2(E)
− Nc log

1

g2(E)
+

Nf
∑

f=k+1

1
2

(

logZA
f (E) + logZB

f (E)
)

= (3Nc−Nf+k)×log
E

|Λk|
. (S.31)

Likewise, in the EFT#(k + 1) for E <∼ Mf , the RG flow is governed by the similar NSVZ

equation for a theory with one less flavor,

8π2

g2(E)
− Nc log

1

g2(E)
+

Nf
∑

f=k+2

1
2

(

logZA
f (E) + logZB

f (E)
)

= (3Nc−Nf +k+1)× log
E

|Λk+1|
.

(S.32)

The two formulae (S.31) and (S.32) should produce the same physical gauge coupling at the

threshold E =Mk+1. Or rather, because of some threshold corrections, at E =M ′ =Mk+1×an
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O(1) numeric constant. Thus, taking the difference between eqs. (S.31) and (S.32) for E =M ′,

we get

1
2

(

logZA
k+1(M

′) + logZB
k+1(M

′)
)

= (3Nc−Nf+k)×log
M ′

|Λk|
− (3Nc−Nf+k+1)×log

M ′

|Λk+1|
(S.33)

and hence

(3Nc−Nf+k+1) log(|Λk+1|)− (3Nc−Nf+k) log(|Λk|) = log(M ′) + 1
2 log(Z

A
k+1) +

1
2 log(Z

B
k+1).

(S.34)

But the RHS of this formula amounts to

log(Mk+1) +

(

numeric

constant

)

+ log
√

ZA
k+1Z

B
k+1 = log(|mk+1|) +

(

numeric

constant

)

, (S.35)

therefore

(3Nc−Nf+k+1) log(|Λk+1|) = (3Nc−Nf+k) log(|Λk|) + log(|mk+1|) +

(

numeric

constant

)

(S.36)

and hence

|Λk+1|
3Nc−Nf+k+1 = |Λk|

3Nc−Nf+k × |mk+1| ×

(

numeric

factor

)

. (S.37)

This verifies the magnitude part of eq. (S.28).

As to the phase part of eq. (S.28), it should follow by holomorphy, but we may verify it

directly in terms of the instanton angles Θk and Θk+1 of the two effective theories. Note that

the CP violating phase of an effective QCD or SQCD is not its instanton angle but rather

Θ = Θ + phase det

(

mass matrix for

the EFTs flavors

)

, (S.38)

thus

Θk = Θk +

Nf
∑

f=k+1

phase(mf ),

Θk+1 = Θk+1 +

Nf
∑

f=k+2

phase(mf ).

(S.39)
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But the CP violating phase should not change when we integrate out a massive flavor, thus

Θk+1 = Θk (S.40)

and hence

Θk+1 = Θk + phase(mk+1). (S.41)

Finally,

Θk = 2πRe τk = phase
(

Λ
3Nc−Nf+k
k

)

(S.42)

and likewise

Θk+1 = 2πRe τk+1 = phase
(

Λ
3Nc−Nf+k+1
k+1

)

. (S.43)

Consequently, eq. (S.41) becomes

phase
(

Λ
3Nc−Nf+k+1
k+1

)

= phase
(

Λ
3Nc−Nf+k
k

)

+ phase(mk+1), (S.44)

which is precisely the phase part of eq. (S.28).

Problem 2(d), preamble:

For the hierarchical squark VEVs (8), we may integrate out one set of massive vector superfields

at a time. So similarly to parts (a–b), let EFT#k be the effective theory at energies Mk >∼ E >∼

Mk+1, where this time

Mk = φk × g 4

√

ZA
k Z

B
k (S.45)

denotes the physical mass of the vector superfields stemming from the kth eigenvalue φk. At

each threshold, the lower-energy EFT has one color and one flavor less then the higher-energy
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EFT, the EFT#k has Nc−k colors and Nf −k flavors, hence one-loop beta-function coefficient

bk = −3(Nc − k) + (Nf − k) = −3Nc + Nf + 2k. (S.46)

In a moment, we shall see that each step of integrating out the massive particles leads to

Λ
3Nc−Nf−2(k+1)
k+1 =

Λ
3Nc−Nf−2k
k

Mk+1,k+1
×

(

numeric

factor

)

. (S.47)

Given this formula, it easy to see that after k steps starting from the original SQCD

Λ
3Nc−Nf−2k
k = Λ

3Nc−Nf

orig ×
k
∏

f=1

1

Mff
×

(

numeric

factor

)

. (S.48)

In particular, once we use up all Nf flavors of squark VEVs, we end up with the low-energy

SYM with G = SU(Nc −Nf ) and

Λ
3(Nc−Nf )
SYM = Λ

3Nc−Nf

orig ×

all
∏

f

1

Mff
×

(

numeric

factor

)

=
Λ
3Nc−Nf

orig

det(M)
×

(

numeric

factor

)

.

(S.49)

exactly as in eq. (7).

Problem 2(d), verifying eq. (S.47):

Let’s start with the magnitudes on two sides of eq. (S.47). The RG flow of the gauge coupling

at energies above the Mk+1 threshold is governed by the NSVZ equation

8π2

g2(E)
− (Nc − k) log

1

g2(E)
+

f
∑

f=k+1

(

1
2 logZ

A
f + 1

2 logZ
B
f

)

=

= (3Nc −Nf − 2k) log
E

|Λk|
,

(S.50)
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while the RG flow below the threshold is governed by a similar NSVZ equation

8π2

g2(E)
− (Nc − k − 1) log

1

g2(E)
+

f
∑

f=k+2

(

1
2 logZ

A
f + 1

2 logZ
B
f

)

=

= (3Nc −Nf − 2k − 2) log
E

|Λk+1|
.

(S.51)

At the threshold E =Mk — or rather in its vicinity at energy

M ′ = Mk+1 ×

(

numeric

factor

)

=
√

|Mk+1,k+1| × g 4

√

ZA
k+1Z

B
k+1 ×

(

numeric

factor

)

(S.52)

— both EFT#k and EFT#(k + 1) should have the same gauge coupling g(E = M ′). Thus,

subtracting eq. (S.51) from eq. (S.50), we get

− log
1

g2
+ 1

2 log(Z
A
k+1) + 1

2 log(Z
B
k+1) =

= (3Nc −Nf − 2k) log
M ′

|Λk|
− (3Nc −Nf − 2k − 2) log

M ′

|Λk+1|

(S.53)

and hence

(3Nc −Nf − 2k − 2) log(|Λk+1|) − (3Nc −Nf − k) log(|Λk|) =

= −2 log(M ′) − log
1

g2
+ 1

2 log(Z
A
k+1) + 1

2 log(Z
B
k+1)

= log
g2
√

ZA
k+1Z

B
k+1

M ′2

= log
1

|Mk+1,k+1|
+

(

numeric

constant

)

.

(S.54)

Exponentiating both sides of this formula, we immediately arrive at

|Λk+1|
3Nc−Nf−2k−2 =

|Λk|
3Nc−Nf−2k

|Mk+1,k+1|
×

(

numeric

factor

)

, (S.55)

which is precisely the magnitude aspect of eq. (S.47).
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As to the phase aspect of eq. (S.47), it follows by holomorphy from the magnitude aspect,

but there is also an independent argument in terms of the Θ angles. In general, integrating out

massive fermions leads to

Θk+1 = Θk +
∑

mult

2R(mult)× phase(mmult) (S.56)

where the sum is over multiplets of Dirac fermions that are present in the higher-energy EFT#k

but not in the lower-energy EFT#(k + 1), and the index is WRT to the lower-energy gauge

group. For the problem at hand, the fermions in EFT#k but not in EFT#(k+1) belong to the

massive vector superfields, and WRT to the lower-energy gauge group SU(Nc−k−1) they form

a fundamental multiple, an antifundamental multiplet, and a singlet. Consequently, eq. (S.56)

becomes

Θk+1 = Θk + phase(mfund) + phase(mantifund). (S.57)

In the SUSY Higgs mechanism, both masses stem from the Yukawa couplings of the LH gluinos,

quarks, and antiquarks to the conjugate 〈A∗〉 and 〈B∗〉 scalars. For the situation at hand, this

means to the φ∗k+1, hence

phase(mfund) = phase(mantifund) = − phase(φk+1) = −1
2 phase(Mk+1,k+1). (S.58)

Thus,

Θk+1 = Θk − phase(Mk+1,k+1) (S.59)

and therefore

phase
(

Λ
3Nc−Nf−2(k+1)
k+1

)

= phase
(

Λ
3Nc−Nf−2k
k

)

− phase
(

Mk+1,k+1

)

, (S.60)

exactly as in the phases of two sides of eq. (S.47).
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