PHY-396 T: SUSY Solutions for problem set #6.

Problem 1(a):

Let’s start with the continuous global symmetries

Gt = (SUM) x U()x x Uy ) x (SUMA) x U)x x Uy ) x UW)r  (S1)

which act on the A, B, and C fields according to the following charge table

QN SU(4), U(1)x1 U(1)y1 SU(4)2 U(1)x2 U(1)yo

fields

A 1 +2 0 1 0 0
Bi,...,By 4 —1 +1 1 0 0
Ci,....Cy 1 —1 —1 1 0 0

A, 1 0 0 1 +2 0
Bs,..., Bs 1 0 0 4 ~1 +1
Cs,...,Cs 1 0 0 1 ~1 ~1

(S.2)
Here QN — the quantum numbers — refer to the abelian charges or to the non-abelian multi-

plets (in boldface). As to the R symmetry,

all scalars ¢ have R = +% ;
all matter fermions 1, have R = —% , (S.3)
all gauginos A\, have R = +1, .

all vectors V), have R = 0.

In the quantum theory we must check the abelian classical symmetries for the gauge anomalies

Z (global charge) x Index [gauge SU(2); or SU(Q)Q]. (S.4)

fermions

It is easy to see that the Y7 and Y5 charges are anomalous WRT both SU(2) factors but the

combination Y = Y] — Y5 is anomaly-free. Also, the X, X9, and R charges are non-anomalous.



Thus, the quantum theory has continuous global symmetry

Gaimi™ = (SUM@) x U(1)x) x (SU@) x U()x) < UQ)y xU(g.  ($5)

As to the discrete symmetries, we have the anomaly-free Zg subgroup of the U(1)y11y2
which multiplies all the B; fields by €27/8 and all the C; by e~27/%. More importantly, we
have a Zgs symmetry that swaps fields appearing in the first term of the superpotential (2) with

fields appearing in the second term,
Z2 : A1 A A2 s Bi — BH:4, CZ' — C¢i4. (86)

This symmetry assures that the A; and the A fields have the same anomalous dimension .
Also, together with the SU(4); x SU(4)2 it makes sure that all eight B; fields have the same

anomalous dimension v and all eight C; fields have the same anomalous dimension 7.

Problem 1(b):
Thanks to SUSY, there is no counterterm ¢, for the Yukawa coupling. Consequently, its
renormalization follows solely from the wave-function renormalization of the chiral superfields,

thus
By = AX (ya+98+70) (5.7)

As to the gauge couplings, their beta-function are given by the Novikov—-Shifman—Vainshtein—

Zaharov equations

3
5g1:mﬁgiwx[—3><2+2><2><%><(1—27A)+4><2><%><(1—273)
p 1 (S.8)
1
= —— 5 x (14 +27p)
4r? — g3
and similarly
g3
Bg2:1&r27illg2x —3><2—|—2X2><%><(1—27A)—i—4><2><%><(1—2’yc)]
4 (S.9)
92

= g~ (va + 270)-
2

Equations (S.7), (S.8), and (S.9) give us exact beta-functions (true to all orders of the pertur-

bation theory) in terms of the anomalous dimensions. Hence, the fixed points where all three



beta—functions vanish, 8 = 341 = B42 = 0 lie wherever

Ya+B+I0 = YA+ = Y4+ = 0, (5.10)

or equivalently
(A g1,92) = oA g1, 92) = —374(N g1, 92). (S.11)

Note that the three egs. (S.10) are not independent, hence only two egs. (S.11).

Viewed as equations for the couplings A\, g1 and go — on which the anomalous dimensions
depend — the two egs. (S.11) define a line in the 4D coupling space. All point on this line are

fixed points of the renormalization group.

Preamble to problem 1(c):

A few weeks ago we saw in class that in the Wess—Zumino model the chiral superfield ® has

anomalous dimension
A2

3272

W7

= + + O(IM) (S.12)

where A is the canonically normalized Yukawa coupling. This formula has a straightforward

generalization to a theory of several chiral superfields ®; with Yukawa couplings A;j;, namely

Yukawas [(I) ] . 1

] = 4_@2‘)\”“2 + higher loops. (S.13)

jk

v

In this formula, we should sum over all quantum numbers hiding behind the indices j and k,
such as the species (e.g., A, B, or ('), the ‘flavor’ (e.g., i of A;, B;, or C;) and the color — or
whatever the gauge index may be appropriate for the field in question (e.g., the colors of both
SU(2) groups for the A; fields). Also, if j # k we should include both (i, k) and (k,j) pairs

into the sum — which gives us an overall factor of 2.

Now consider the effect of the gauge couplings. In SQED, we saw in class that

2 2
SQED . € q;
+Q [‘Pi]——&ré

+ O(eh). (S.14)

Generalization to the non-abelian gauge theories is quite straightforward: For a simple gauge



group G,
2

AR [D] = _% x Ca(®;) + higher loops (S.15)

where (9 is a quadratic Casimir of a gauge multiplet to which the ®; fields belongs (e.g.,
Cy = I(I + 1) for an SU(2) multiplet of isospin I), and ¢ is normalized conventionally (as
in the Standard Model or GUTs, not as in the Superspace book). More generally, for a gauge
symmetry G = [[,, G, which has several simple (or abelian) factors GG, with respective couplings

gu, we have

FENE w Zgy x Cy)(@;) + higher loops. (8.16)

Finally, in a generic theory that has both gauge and Yukawa couplings, the one-loop anoma-

lous dimensions are

n Gu
Nitop[®i] = Nibsp (@] + 1fiom(@i] = +57- 2Z| ik’ = Z gy x Cy™(@:). (S.17)

Problem 1(c):

Now let’s apply egs. (S.17) for the theory in question. The gauge group is SU(2) x SU(2),
and WRT each factor, the A, B, C fields are either doublets (Cy = 3) or singlets (Cy = 0).
Specifically, A; € (2,2), B; € (2,1), C; € (1,2), hence the gauge couplings’ contributions to

the one-loop anomalous dimensions are

3 3 3
gauge o 2 2 gauge - 2 gauge o 2

(S.18)

Now consider the Yukawa couplings’ contributions (S.13). For the superpotential (2) all

non-zero couplings have the same value = A, hence

AP

3272

’yﬁ%lgi,wa[q)z] = 4 X #(j, k) pairs for which \;;;, # 0. (S.19)

Let’s start with ®; being an A field; for the sake of definiteness, let ®; = A; of some fixed
SU(2) x SU(2) colors (c1,c2). Then we get a non-zero Yukawa coupling for ®; = By of flavor



f=1,2,3,4 and color c; and ®;, = Cy (same f) of color co. Summing over f = 1,2, 3,4 gives
us four (7, k) pairs, times two for the j <> k exchange. Altogether, there are eight (j, k) pairs,
hence

AP

Mooy A = +35 5 X8, (S.20)

Now let ®; be a B field, say ®; = By of color ¢;. Then we get \;;; # 0 for ; = C1 (note same
flavor) and some color ca = 1,2 and ®; = A; of colors (c1,cz). All the flavors here are fixed,
and so is the SU(2); color ¢1, but the SU(2)2 color ¢z is not, hence summing over the cg = 1,2

gives us two (7, k) pairs. Multiplying by two for the j <+ k exchange, we get four pairs, thus

- A2
Mooy [B] = 39,2 X4 (5.21)
Similarly,
Yukawa |)‘|2
V1 1oop [C] = +32ﬂ_2 X 4. (8.22)

Combining these Yukawa contributions with the gauge contributions (S.18), we arrive at

the net one-loop anomalous dimensions

,ynet [A] _ 8‘)‘|2 B 39% — 39%

1 loop 39272 )
4I\? — 3g2

WioopBl = =55 (3.23)
41\? — 343

“Yﬁct)op[c] = W

It remains to plug in these anomalous dimensions into the fixed-point equations

Y5\ g1,92) = e\ g1,92) = =374\, 91, 92). (S.11)

Clearly, the first equation vz = 7, requires g = go. In fact, by symmetry between the two
SU(2) gauge groups, this condition is exact to all orders of the perturbation theory. As to the



second equation (S.11),
32m%(y4+ 75 +7¢) = 16|A*> — 697 — 695 + higher loops, (S.24)
hence the fixed points lie along the line
2 2 16 2 4 2
g1 = 92 = 5 |IA° + O(A7/1677). (3)

Quod erat demonstrandum.

Problem 1(d):

Let’s take a closer look at the beta-functions

3
91

= —— 2 S.8

Bo1 proy X (Ya+27B), (S.8)
9

= -7z 2 S.9

Bg2 in? — g2 X (74 +27¢), (S.9)

B = +Ax (va+78 +70) (5.7)

and the one-loop anomalous dimensions (S.23). Suppose we start at some point in the coupling
space where g; > go. In this case, egs. (S.23) yield v5 < 7., hence according to eqgs. (S.8)
and (S.9) 81 > (2. This means that the difference g; — g2 increases in the UV direction but
decreases in the IR direction. Likewise, had we started with g2 > g1, the difference go — g1
would also decrease in the IR direction. Thus, regardless of our starting point in the coupling
space, the RG flow would bring the gauge couplings g1 and g closer to each other in the IR,
and ultimately — in the very deep IR — we would end up with g; = go.

Now the other direction in which we may deviate from the fixed line (3). Let start with the

Yukawa coupling too weak compared to the gauge couplings, i.e. g% = g% > %|)\\2. In this case,

YA+ 293 = Y4 +27% =94+t <0 (5.25)

and hence 841 = f42 > 0 while 8y < 0, which means that in the IR direction the Yukawa

coupling becomes stronger while the gauge couplings become weaker. Likewise, if we start the



RG flow with the Yukawa coupling too strong relative to the gauge couplings, i.e. g% =g5 <
3|A%, then

Ya+ 27 = Y4+ 2% = Y4+t + ¢ > 0 (5.26)

and hence 341 = By2 < 0 while 8y > 0: this time, the Yukawa coupling becomes weaker in
the IR direction while the gauge couplings become stronger. In either case, the gauge and
Yukawa coupling converge towards each other — or rather towards the fixed line (3) — in the

IR direction. And that’s what makes the fixed line (3) IR-attractive.

Problem 1(e):

The line (3) or IR-attractive fixed points gives rise to a whole family of non-trivial SCFTs.
At one end of the fixed line (3), all 3 couplings g1, g2, and A are weak and all the anomalous
dimensions are small. But apart from this weakly-coupled region, the fixed line (3) extends to
strong, or at least O(1) couplings. In this regime, the perturbation theory breaks down and
we no longer have accurate formulae for the anomalous dimensions, or even for the g; = g2 as
a function of |\ — the fixed line in the 3D coupling space probably isn’t straight (outside the
weak-couplings region), and we don’t know its precise shape. But it certainly does go somewhere
in the strongly-coupled region, so our family of the SCFTs includes both weakly-coupled and

strongly-coupled theories.

Problem 2(a—b), preamble:

For an hierarchical pattern of quark masses, we may integrate out one heavy flavor at a time.
So consider an effective theory##k for the energy range My > E > My, q: From this EFT,
k of the heaviest flavors have already been integrated out while Ny — & lighter flavors remain
in the theory. Let 7 be the Wilsonian gauge coupling of that EFT and Aj its dimensional

transmutant,

APNNEE (Y cutoft) NN o exp(2mim). (8:27)

In particular, for k = Ny the EFT# Ny is the low-energy SYM without any flavors at all. Also,
we may identify the original SQCD as EFT#O0.



In a moment, I am going to show that integrating out one quark flavor at a time leads to

3N.—Ns+k+1 3N.—Nj+k numeric
A, ! = A} T xmpy x| S.28
k+1 s factor (5.28)
Once we establish this formula, we may use it Ny times to get
numeric
AN = 3N N mye X S.29
k=N = H / factor ( )
and hence
3N, _ A3N.—N; numeric
ASYM - Aorlg X det( ) ( factor /)’ (4)

which verifies part (a). Also, for part (b), we integrate the k heavy flavors and then stop, so
applying eq. (S.28) k times we get

BNe—Nj+k _ p3Ne—Ny numeric
Ak‘ - orlg x Hmf X ( factor ) (S?)D)

Problem 2(a-b), deriving eq. (S.28):
Let’s start with the magnitudes of the two sides of eq. (S.28). In the EFT##E for E' < My, the
RG flow is governed by the NSVZ (Novikov-Shifman—Vainshtein—Zaharov) equation

82 E
— _ N.log—— zm Z (log ZH(E) +log ZF (E)) = (3Ne—Np+k)xlog

() R IR

Likewise, in the EFT#(k + 1) for E < My, the RG flow is governed by the similar NSVZ

equation for a theory with one less flavor,

{72
9*(E)

3(log Z{(E) +log Z7(E)) = (3N.—Ny+k+1)xlog Tk

(S.32)
The two formulae (S.31) and (S.32) should produce the same physical gauge coupling at the

F=k+2

threshold E = M}, 1. Or rather, because of some threshold corrections, at £ = M’ = My, 1 xan



O(1) numeric constant. Thus, taking the difference between eqs. (S.31) and (S.32) for E = M’,

we get

/ /

Al (BNe—Ny+k+1)xlog

(108 Z4 (M) +1og ZB, (M) = (3Ne— Ny +1) xlog R
(S.33)

and hence

(3Ne—Np+k+1)log(|Agt1]) — BN—Np+k) log(|Ag]) = log(M') + Llog(Zi ) + S log(ZE1).
(S.34)
But the RHS of this formula amounts to

numeric numeric
log(M, logy/ZA 7B =1 .
0g(Myt1) + (constant) + g k+17k+1 og(|me]) + (constamt)7 (5.35)

therefore
numeric
(BN~ Ny k1) log[Agsal) = (3N R og(Jul) + Iog(lmusa) + o ) (530)
and hence
A BNe—Nj+k+1 _ A, |3Ne—Ny+k numeric S 37
| A1l |A] X mppa| < (e L (S.37)

This verifies the magnitude part of eq. (S.28).

As to the phase part of eq. (S.28), it should follow by holomorphy, but we may verify it
directly in terms of the instanton angles O and O of the two effective theories. Note that

the CP violating phase of an effective QCD or SQCD is not its instanton angle but rather

— mass matrix for
O =06 hase det S.3
- phasede <the EFTs ﬂavors)7 (5-38)
thus
Ny
O = 6 + Z phase(my),
F=k+1
N; (S.39)
Orr1 = O + Z phase(my).
f=h+2



But the CP violating phase should not change when we integrate out a massive flavor, thus

and hence
Or+1 = O + phase(mgy1). (S.41)
Finally,
Or = 2nRer, = phase(AiNc_Nf+k) (S5.42)
and likewise
Opy1 = 2rRempyy = phase(ApYs ), (S.43)
Consequently, eq. (S.41) becomes
phase(Aif‘fNﬁkH) = phase(AchfoJrk) + phase(mygi1), (S.44)

which is precisely the phase part of eq. (S.28).

Problem 2(d), preamble:

For the hierarchical squark VEVs (8), we may integrate out one set of massive vector superfields
at a time. So similarly to parts (a-b), let EFT#£k be the effective theory at energies M 2 E 2

Mip. 1, where this time

My, = ¢ x g\/ Z{0ZP (S.45)

denotes the physical mass of the vector superfields stemming from the k' eigenvalue ¢y. At

each threshold, the lower-energy EFT has one color and one flavor less then the higher-energy

10



EFT, the EFT#k has N.—k colors and Ny — k flavors, hence one-loop beta-function coefficient

b, = —3(Ne—k) + (Ny—k) = —3N. + Ny + 2k. (S.46)

In a moment, we shall see that each step of integrating out the massive particles leads to

3N.—N;—2k .
ABNe=Ny=2(k+1) _ A numeric (S.47)
s M1 k11 factor /) '
Given this formula, it easy to see that after k steps starting from the original SQCD
3N.—Ny—2k ABNe—N. numeric
AT = ! : S.48
k Orlg H M it ( factor ) ( )

In particular, once we use up all Ny flavors of squark VEVs, we end up with the low-energy

SYM with G = SU(N, — Ny) and
3(Ne—Ny) 3N.—N A numeric
—=Ny) o= Vy
Asvar = Ao % H M~ ( factor )
B Origi o numeric
~ det(M) factor /)

(S.49)

exactly as in eq. (7).

Problem 2(d), verifying eq. (S.47):

Let’s start with the magnitudes on two sides of eq. (S.47). The RG flow of the gauge coupling
at energies above the My threshold is governed by the NSVZ equation

!
87T2 1 A B
FE] (z\fc—k)logm + Y (Slogzf + Llogz7) =
f=k+1 (S.50)
E
— (3N.— N — 2k)log — ,
| Al

11



while the RG flow below the threshold is governed by a similar NSVZ equation

f
87T2 1 A B
2E) (Nc—k—l)logg2(E> + Y (3logZf + $log Zf) =
f=h+2 (S.51)

= (3N.— N+ -2k —2)1o .
(8N = Ny ) S heet]

At the threshold £ = M, — or rather in its vicinity at energy

numeric numeric
M = M, = 4/ WzaA 7B S.52
k+1 X ( factor ) (Mpg1ks1] X g k+1Zk+1 X factor ( )

— both EFT#k and EFT#(k + 1) should have the same gauge coupling g(F = M'). Thus,
subtracting eq. (S.51) from eq. (S.50), we get

1
—log —= + %1og(Zl;4+1) + %log(zlfﬂ) =
g
, A (S.53)

— (3Ne— Ny —2k)log T — (3Ne — Ny — 2k —2)log
|Ag| | Ak

and hence

(8Ne = Ny =2k — 2)log(|Ag41]) — (3Ne — Ny — k) log(|Ax]) =
1
= —2log(M') — log -5 + 3log(Z{s) + 3loa(Zi)

2 /-4 B
9\ L1214

M/2

) 1 . numeric
= log———— )
& | M1 1] constant

= log

(S.54)
Exponentiating both sides of this formula, we immediately arrive at
| Ay g [P N =22 \Ak\:}NﬁNﬁ% y (numeric) (5.55)
k+1 = ) .
| M1 k1] factor

which is precisely the magnitude aspect of eq. (S.47).

12



As to the phase aspect of eq. (S.47), it follows by holomorphy from the magnitude aspect,
but there is also an independent argument in terms of the © angles. In general, integrating out

massive fermions leads to

Or1 = O + ZZR(mult) X phase(mmu) (S5.56)

mult

where the sum is over multiplets of Dirac fermions that are present in the higher-energy EF T#k
but not in the lower-energy EFT#(k + 1), and the index is WRT to the lower-energy gauge
group. For the problem at hand, the fermions in EFT##k but not in EFT#(k+ 1) belong to the
massive vector superfields, and WRT to the lower-energy gauge group SU(N.—k —1) they form
a fundamental multiple, an antifundamental multiplet, and a singlet. Consequently, eq. (S.56)

becomes

@k—H = @k + phase(mfund) + phase<mantifund>- <S57>

In the SUSY Higgs mechanism, both masses stem from the Yukawa couplings of the LH gluinos,
quarks, and antiquarks to the conjugate (A*) and (B*) scalars. For the situation at hand, this

means to the ¢;_ ;, hence

phase(mgng) = phase(Maptifund) = — phase(dpr1) = —%phase(Mk+17k+1). (S.58)

Thus,

Ok+1 = O — phase(Mpyy141) (S.59)
and therefore

phase(Aififo*z(kH)) = phase(A]?;NC_Nf_%) — phase(Mk+17k+1), (S.60)

exactly as in the phases of two sides of eq. (S.47).
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