Problem 2(a):

In the absence of a superpotential, all chiral superfields are moduli except those eaten up by the supersymmetric Higgs mechanism. Generic VEVs of $N_f > N_c$ squarks and antisquarks break the $SU(N_c)$ gauge symmetry down to nothing, so all $N_c^2 - 1$ gauge fields become massive and hence $N_c^2 - 1$ chiral superfields are eaten up. The number of the remaining moduli fields is

#moduli =
$$2N_f N_c - (N_c^2 - 1)$$
, (S.1)

which for $N_f = N_c + 1$ happens to be $2(N_c + 1)N_c - N_c^2 + 1 = N_c^2 + 2N_c + 1 = N_f^2$.

Problem 2(b):

In matrix notations, the squarks Q form an $N_c \times N_f$ matrix while the antisquark matrix \widetilde{Q} is $N_f \times N_c$. For $N_c < N_f$, the matrix product $\mathcal{M} = \widetilde{Q}Q$ has rank no greater than N_c , and since \mathcal{M} itself is $N_f \times N_f$, its determinant must vanish, $\det(\mathcal{M}) = 0$.

Now consider the meson-baryon product

$$\mathcal{M}_{ff'}\mathcal{B}^{f'} = \widetilde{Q}_{f,c} \times Q_f^c Q_{f_1}^{c_1} \cdots Q_{f_N}^{c_N} \epsilon^{f'f_1 \cdots f_N} \times \frac{1}{N!} \epsilon_{c_1 \cdots c_N}.$$
 (S.2)

The middle factor here is the antisymmetrized product of $N + 1 = N_f > N_c$ squark flavors. By Bose statistics, their colors have to be antisymmetrized as well, but we have only $N_c = N$ colors so that's not possible. Consequently,

$$Q_f^c Q_{f_1}^{c_1} \cdots Q_{f_N}^{c_N} \epsilon^{f'f_1 \cdots f_N} = 0 \quad \text{for any colors} \quad \Longrightarrow \quad \mathcal{M}_{ff'} \mathcal{B}^{f'} = 0.$$
 (S.3)

Similarly, $\widetilde{\mathcal{B}}^f \mathcal{M}_{ff'} = 0$.

To prove the last relation $\min(\mathcal{M})^{ff'} = \widetilde{\mathcal{B}}^f \mathcal{B}^{f'}$, consider the $N \times N$ sub-matrix $Q^{(\mathfrak{X}')}$ of the quark matrix which contains all the colors but only $N = N_f - 1$ flavors — all except the

f'. The determinant of this square sub-matrix is

$$\det \left(Q^{(f')} \right) = \epsilon_{c_1 \cdots c_N} Q_{c_1}^1 \cdots Q_{f_N}^{f'} \cdots Q_{f_N}^{c_N}$$

$$= \frac{(-1)^{f'-1}}{N!} \epsilon^{f'f_1 \cdots f_N} \epsilon_{c_1 \cdots c_N} Q_{c_1}^1 \cdots Q_{f_N}^{c_N}$$

$$= (-1)^{f'-1} \times \mathcal{B}^{f'}$$
(S.4)

Similarly, the $N \times N$ square sub-matrix $\widetilde{Q}^{(f)}$ of the antisquark matrix containing all flavors except f has determinant

$$\det\left(\widetilde{Q}^{(f)}\right) = (-1)^{f-1} \times \widetilde{\mathcal{B}}^f. \tag{S.5}$$

Since the sub-matrices $\widetilde{Q}^{(f)}$ and $Q^{(f')}$ include all the colors, their product

$$\mathcal{M}^{(\mathfrak{f})(\mathfrak{f}')} = \widetilde{Q}^{(\mathfrak{f})}Q^{(\mathfrak{f}')} \tag{S.6}$$

is an $N \times N$ sub-matrix of the meson matrix, including all antiquark flavors except f and all quark flavors except f'. By definition of the minor,

$$\min(\mathcal{M})^{ff'} = (-1)^{f-f'} \times \det\left(\mathcal{M}^{(f)(f')}\right)$$

$$= (-1)^{f-f'} \times \det\left(\widetilde{Q}^{(f)}\right) \times \det\left(Q^{(f')}\right)$$

$$= \widetilde{\mathcal{B}}^{f} \times \mathcal{B}^{f'}.$$
(S.7)

Problem 2(c):

Let's pick a flavor basis in which the meson matrix is diagonal, $\mathcal{M} = \operatorname{diag}(m_1, m_2, \dots, m_{N_f})$. Since $\operatorname{det}(\mathcal{M}) = 0$, one eigenvalue must vanish, say $m_1 = 0$; the other eigenvalues could vanish too, but generically they don't, so let's assume $m_2, \dots, m_{N_f} \neq 0$.

The condition $\mathcal{M}_{ff'}\mathcal{B}^{f'}$ makes the $\mathcal{B}^{f'}$ vector an eigenvector of the meson matrix corresponding to the zero eigenvalue. For the $\mathcal{M} = \mathrm{diag}(0, m_2, \dots, m_{N_f})$, this means

$$\mathcal{B}^{f'} = \begin{pmatrix} b \\ 0 \\ \vdots \\ 0 \end{pmatrix} \tag{S.8}$$

Similarly, the condition $\widetilde{\mathcal{B}}^f \mathcal{M}_{ff'}$ restricts the antibaryon vector to

$$\widetilde{\mathcal{B}}^f = (\widetilde{b}, 0, \dots, 0). \tag{S.9}$$

Now consider the last condition (2). Given the restrictions we have already established, we automatically have

$$\operatorname{minor}(\mathcal{M})^{ff'} = 0 = \widetilde{\mathcal{B}}^f \times \mathcal{B}^{f'} \quad \text{for all } (f, f') \text{ pairs except } (1, 1).$$
 (S.10)

On the other hand, for f = f' = 1, we have one more constraint

$$\operatorname{minor}(\mathcal{M})^{1,1} = \prod_{f=2}^{N_f} m_f = \widetilde{\mathcal{B}}^1 \times \mathcal{B}^1 = \widetilde{b}b.$$
 (S.11)

Altogether, for a given meson matrix \mathcal{M} with a zero eigenvalue, the constraints (2) fix all the baryonic and antibaryonic moduli except one: the ratio \tilde{b}/b .

Note that this result does not depend on the \mathcal{M} matrix being actually diagonal, we used the diagonal form only to make our algebra simple. For a non-diagonal \mathcal{M} with one zero eigenvalue, we have more complicated baryon and antibaryon vectors than (S.8) and (S.9) — they are the column eigenvector and the row eigenvector of \mathcal{M} corresponding to the zero eigenvalue — but the net number of the un-fixed baryonic moduli remains the same: For a given meson matrix, the constraints (2) fix all the baryons and antibaryons in terms of just one free modulus.

So let's count the un-fixed moduli. There are N_f^2 mesons $\mathcal{M}_{ff'}$ subject to one constraint $\det(\mathcal{M}) = 0$, which gives us $N_f^2 - 1$ independent mesonic moduli. Given all these moduli, we need one more modulus to determine the baryons and the antibaryons. Thus, the net number of independent moduli is N_f^2 — which is precisely the number of the chiral multiplets left un-eaten by the Higgs mechanism, cf part (a).

Problem 2(d):

In any SUSY vacuum of the effective theory we must have $\partial W/\partial$ (any chiral SF) = 0. In particular,

$$\frac{\partial W}{\partial \widetilde{\mathcal{B}}^{f}} = C \mathcal{M}_{ff'} \mathcal{B}^{f'} = 0,$$

$$\frac{\partial W}{\partial \mathcal{B}^{f'}} = C \widetilde{\mathcal{B}}^{f} \mathcal{M}_{ff'} = 0,$$

$$\frac{\partial W}{\partial \mathcal{M}_{ff'}} = C \left(\widetilde{\mathcal{B}}^{f} \times \mathcal{B}^{f'} - \operatorname{minor}(\mathcal{M})^{ff'} \right) = 0,$$
(S.12)

which reproduces three out of four constraints (2). The remaining constraint $\det(\mathcal{M})$ follows from these three: For any $N_f \times N_f$ matrix,

$$\sum_{ff'} \operatorname{minor}(\mathcal{M})^{ff'} \mathcal{M}_{ff'} = N_f \operatorname{det}(\mathcal{M}), \tag{S.13}$$

but given the chiral ring equations (S.12),

$$\sum_{ff'} \operatorname{minor}(\mathcal{M})^{ff'} \mathcal{M}_{ff'} = \sum_{ff'} \widetilde{\mathcal{B}}^f \mathcal{B}^{f'} \mathcal{M}_{ff'} = 0, \tag{S.14}$$

hence $\det(\mathcal{M}) = 0$.

Problem $2(\star)$:

Without loss of generality, we may use the $SU(N_f)_L \times SU(N_f)_R$ flavor symmetries of the effective theory to choose a flavor basis where the $\langle \mathcal{M} \rangle_{ff'}$ matrix is diagonal. As we saw in part (c), this means

$$\langle \mathcal{M} \rangle = \operatorname{diag}(0, m_2, \dots, m_{N_f}), \qquad \langle \mathcal{B} \rangle = \begin{pmatrix} b \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \qquad \left\langle \widetilde{\mathcal{B}} \right\rangle = (\widetilde{b}, 0, \dots, 0).$$
 (S.15)

Now let's expand the moduli superfields around this point:

$$\mathcal{M}_{ff'} = \langle \mathcal{M} \rangle_{ff'} + \delta \mathcal{M}_{ff'}(y,\theta), \quad \mathcal{B}^f = \langle \mathcal{B} \rangle^f + \delta \mathcal{B}^f(y,\theta), \quad \widetilde{\mathcal{B}}^f = \left\langle \widetilde{\mathcal{B}} \right\rangle^f + \delta \widetilde{\mathcal{B}}^f(y,\theta)$$
(S.16)

without imposing any constraints on the $\delta \mathcal{M}, \delta \mathcal{B}, \delta \widetilde{\mathcal{B}}$ superfields. Instead, some of these $2N_f^2 + 2N_f$ superfields get their masses from the superpotential (4).

Indeed, expanding the determinant of the $\langle \mathcal{M} \rangle + \delta \mathcal{M}$ matrix, we obtain

$$\det(\mathcal{M} + \delta \mathcal{M}) = 0 + \prod_{i>1} m_i \times \delta \mathcal{M}_{11} + \sum_{j>1} \prod_{i\neq 1,j} m_i \times \left(\delta \mathcal{M}_{11} \delta \mathcal{M}_{jj} - \delta \mathcal{M}_{1j} \delta \mathcal{M}_{j1}\right) + O(\delta \mathcal{M}^3),$$
(S.17)

while

$$\mathcal{B}^{f}\mathcal{M}_{ff'}\widetilde{\mathcal{B}}^{f'} = 0 + b\widetilde{b} \times \delta\mathcal{M}_{11} + \sum_{j>1} m_{j} \times \delta\mathcal{B}^{j}\delta\widetilde{\mathcal{B}}^{j} + b \times \sum_{j} \delta\mathcal{M}_{1j}\delta\widetilde{\mathcal{B}}^{j} + \widetilde{b} \times \sum_{j} \delta\mathcal{B}^{j}\delta\mathcal{M}_{j1}$$
+ cubic terms. (S.18)

Combining these expansions and using $b \times \tilde{b} = m_2 \times \cdots m_{N_f}$, we obtain

$$W = C \times \sum_{j=2}^{N_f} \left(\delta \mathcal{M}_{1j}, \delta \mathcal{B}^j \right) \begin{pmatrix} \frac{b\tilde{b}}{m_j} & b \\ \tilde{b} & m_j \end{pmatrix} \begin{pmatrix} \delta \mathcal{M}_{j1} \\ \delta \tilde{\mathcal{B}}^j \end{pmatrix}$$

$$+ C \left(b \times \delta \tilde{\mathcal{B}}^1 + \tilde{b}\delta \times \mathcal{B}^1 - \sum_{i>1} \frac{b\tilde{b}}{m_i} \times \delta \mathcal{M}_{ii} \right) \times \delta \mathcal{M}_{11}$$
+ cubic and higher-order terms. (S.19)

Each term on the first line here seems to give mass to 4 chiral superfields, namely $\delta \mathcal{M}_{j1}$, $\delta \mathcal{M}_{1j}$, $\delta \mathcal{B}^{j}$, and $\delta \tilde{\mathcal{B}}^{j}$. However, the 2 × 2 matrix

$$\begin{pmatrix} \frac{b\tilde{b}}{m_j} & b\\ \tilde{b} & m_j \end{pmatrix}$$

has rank = 1 (for generic b, \tilde{b} , and m_j), so only 2 combinations of these fields become massive while the other 2 remain massless. Combining $N_f - 1$ terms on the first line of (S.19) makes for $2(N_f - 1)$ massive fields, and two more fields become massive thanks to the term on the second line, namely the $\delta \mathcal{M}_{11}$ and one combination of the $\delta \mathcal{B}^1$, $\delta \tilde{\mathcal{B}}^1$, and $\delta \mathcal{M}_{ii}$ (for $i \neq 1$). Altogether, $2N_f$ combinations of the $\delta \mathcal{M}_{ff'}$, $\delta \mathcal{B}^f$, and $\delta \tilde{\mathcal{B}}^f$ fields become massive while the remaining N_f^2 combinations remain massless. The above counting of massive fields works in the generic case of $b \neq 0$, $\tilde{b} \neq 0$, and all $m_j \neq 0$ (for j > 1), or in the basis-independent terms, for $\langle \mathcal{B} \rangle \neq 0$, $\langle \widetilde{\mathcal{B}} \rangle \neq 0$, and $\operatorname{rank}(\langle \mathcal{M} \rangle) = N_f - 1$. But at some special points of the moduli space, some of the mass terms may vanish, so we end up with more than N_f^2 massless fields.

For example, suppose $\langle \mathcal{B} \rangle = \left\langle \widetilde{\mathcal{B}} \right\rangle = 0$ while $\operatorname{rank}(\langle \mathcal{M} \rangle) \leq N_f - 3$, which in the eigenbasis of $\langle \mathcal{M} \rangle$ means $b = \tilde{b} = 0$ and $m_2 = m_3 = 0$. Consequently, the second line of eq. (S.19) vanishes, while on the first line we get non-zero mass terms only for $m_j \neq 0$. Altogether, $2 \operatorname{rank}(\langle \mathcal{M} \rangle)$ fields become massive, while $N_f^2 + 2N_f - 2 \operatorname{rank}(\langle \mathcal{M} \rangle)$ fields remain massless.

In particular, at the special point $\langle \mathcal{B} \rangle = \langle \widetilde{\mathcal{B}} \rangle = \langle \mathcal{M} \rangle = 0$ — which classically corresponds to no squark VEVs at all — the superpotential (4) contains no mass terms at all, so all the $N_f^2 + 2N_f$ moduli fields are massless.

Problem 2(e):

Here is the table of the $SU(N_f)_L \times SU(N_f)_R \times U(1)_V \times U(1)_A$ quantum numbers of all the quarks, antiquarks, mesons, baryons, and antibaryons:

QN fields	CII(N)	CII(N)	17(1)	17(1)
	$SU(N_f)_L$	$SU(N_f)_R$	$U(1)_B$	$U(1)_A$
$Q \sim 2$	$ m N_f$	1	+1	+1
\widetilde{Q}	1	$N_{ m f}$	-1	+1
\mathcal{M}	$ m N_f$	$ m N_f$	0	+2
${\cal B}$	$\overline{ m N_f}$	1	$+N_c$	$+N_c$
$\widetilde{\mathcal{B}}$	1	$\overline{ m N_f}$	$-N_c$	$+N_c$
$\Lambda^{3N_c-N_f}$	1	1	0	$+2N_f$

(S.20)

On the last line here, $\Lambda^{3N_c-N_f} \propto \exp(2\pi i \tau_w)$ is neutral with respect to the anomaly-free symmetries $SU(N_f)_L \times SU(N_f)_R \times U(1)_B$ but has a non-zero charge $+2N_f$ under the anomalous axial symmetry. This charge follows from the shift of the vacuum angle needed to cancel the

axial anomaly:

$$\psi^{\alpha} \to e^{ia}\psi^{\alpha}, \quad \tilde{\psi}^{\alpha} \to e^{ia}\tilde{\psi}^{\alpha}, \quad \Theta \to \Theta + 2a \implies \Lambda^{3N_c - N_f} \to e^{2N_f ia}\Lambda^{3N_c - N_f}. \quad (S.21)$$

As to the pure-R symmetry,

- All scalars, elementary or composite, have R-charge zero.
- All their fermionic superpartners have R-charge -1.
- The gauginos have R-charge +1.
- The instanton factor $\Lambda^{3N_c-N_f} \propto \exp(2\pi i \tau_w)$ has R-charge $-2N_f + 2N_c = -2$.

Problem 2(f):

The effective superpotential must have R-charge +2 and be neutral/invariant under all the other flavor symmetries. Since all the moduli scalars $\mathcal{M}_{ff'}$, $\mathcal{B}^{f'}$, $\widetilde{\mathcal{B}}^{f}$ are R-neutral, the R-charge of the effective superpotential must come from the Λ , thus

$$W_{\text{eff}}(\mathcal{M}, \mathcal{B}, \widetilde{\mathcal{B}}; \Lambda^{3N_c - N_f}) = \Lambda^{N_f - 3N_c} \times H(\mathcal{M}, \mathcal{B}, \widetilde{\mathcal{B}})$$
 (S.22)

for some holomorphic function H of the moduli scalars. (Note: $\Lambda^{N_f-3N_c} = \Lambda^{1-2N_c}$.) Next, the only holomorphic $SU(N_f)_L \times SU(N_f)_R$ invariant combinations of the moduli fields $\mathcal{M}_{ff'}$, $\widetilde{\mathcal{B}}^f$, and $\mathcal{B}^{f'}$ are $X = \widetilde{\mathcal{B}}^f \mathcal{M}_{ff'} \mathcal{B}^{f'}$ and $Y = \det(M)$, hence H depends on the moduli only via these two invariants, thus

$$W_{\text{eff}}\left(\mathcal{M}, \mathcal{B}, \widetilde{\mathcal{B}}; \Lambda^{3N_c - N_f}\right) = \Lambda^{N_f - 3N_c} \times F\left(\left(X = \widetilde{\mathcal{B}}^f \mathcal{M}_{ff'} \mathcal{B}^{f'}\right), \left(Y = \det(\mathcal{M})\right)\right)$$
(6)

for some holomorphic function F(X,Y) of two arguments. Note that the two $SU(N_f)_L \times SU(N_f)_R$ invariants X and Y have zero net quark numbers, so we don't get additional restrictions from requiring the $U(1)_V$ invariance of the superpotential.

It remains to consider the axial symmetry $U(1)_A$. Under this symmetry both X and Y invariants have charge $A = +2N_f$ while the overall factor $\Lambda^{N_f-3N_c}$ has charge $A = -2N_f$. Consequently, to assure the $U(1)_A$ invariance of the superpotential (6), the holomorphic function

F(X,Y) must be a homogeneous function of degree 1,

$$F(\alpha X, \alpha Y) = \alpha \times F(X, Y).$$
 (S.23)

In principle, there is an infinite number of such functions. Indeed, for any holomorphic function f(z) of a single argument,

$$F(X,Y) = X \times f(Y/X)$$
 is homogeneous of degree = 1. (S.24)

However, in the context of superpotential (6) we have an additional physical constraint: For large values of the moduli, the Higgsed SQCD is approximately semi-classical, so the effective superpotential should not have any singularities in this regime. Moreover, large moduli does not mean large $Y = \det(\mathcal{M})$ or large $X = \widetilde{\mathcal{B}}^f \mathcal{M}_{ff'} \mathcal{B}^{f'}$ —to the contrary, we expect these invariants to stay small if not exactly zero due to classical constraints. Therefore, the holomorphic homogeneous function F(X,Y) should not have any singularities at all, and the only such functions are polynomials of appropriate degree. In out case,

$$F(X,Y) = aX + bY (S.25)$$

for some numeric constants a and b, and hence

$$W_{\text{eff}}(\mathcal{M}, \mathcal{B}, \widetilde{\mathcal{B}}; \Lambda^{3N_c - N_f}) = \frac{a}{\Lambda^{3N_c - N_f}} \times \widetilde{\mathcal{B}}^f \mathcal{M}_{ff'} \mathcal{B}^{f'} + \frac{b}{\Lambda^{3N_c - N_f}} \times \det(\mathcal{M}), \quad \text{exactly. (S.26)}$$

The classical superpotential (4) indeed has this form for b = -a.

Note that the powers of Λ here are completely fixed by the R-symmetry, which eliminates any instanton corrections carrying higher powers of Λ . Consequently, in the absence of tree-level masses or Yukawa couplings, the semiclassical effective superpotential (4) is exact and does not suffer any quantum corrections whatsoever.

In other words, the chiral ring of SQCD with $N_f = N_c + 1$ does not suffer from any quantum corrections.

Problem 3(a):

Let's call the mixed RA charge R'. A quick look at the table (S.20) and the list of pure-R charges below immediately identifies the charge generating the symmetry (8) as

$$R' = R + \frac{1}{N_f} A.$$
 (S.27)

The instanton parameter $\Lambda^{3N_c-N_f}$ has $A=+2N_f$ and R=-2, hence R'=0, which indicates that the R' charge is anomaly free.

Alternatively, you may calculate the color anomaly of the R' charge directly from eq. (8) for the fermion charges:

anomaly =
$$R'(\lambda) \times 2 \operatorname{Index}(\lambda) + R'(\psi) \times 2 \operatorname{Index}(\psi) + R'(\tilde{\psi}) \times 2 \operatorname{Index}(\tilde{\psi})$$

= $(+1) \times 2N_c - \frac{N_c}{N_f} \times N_f - \frac{N_c}{N_f} \times N_f$
= $+2N_c - N_c - N_c = 0$. (S.28)

Problem 3(b):

QN fields					
neids	$SU(N_f)_L$	$SU(N_f)_R$	V charge	R' charge	#colors
λ	1	1	0	+1	$N_c^2 - 1$
ψ_Q	$ m N_f$	1	+1	$\frac{1}{N_f} - 1$	N_c
$ ilde{\psi}_Q$	1	$ m N_f$	-1	$\frac{1}{N_f} - 1$	N_c
Ψ_M	$ m N_f$	$ m N_f$	0	$\frac{2}{N_f} - 1$	1
Ψ_B	$\overline{ m N_f}$	1	$+N_c$	$\frac{N_c}{N_f} - 1$	1
$\widetilde{\Psi}_B$	1	$\overline{ m N_f}$	$-N_c$	$\frac{N_c}{N_f} - 1$	1

(S.29)

Problem 2(c):

Let's calculate the non-trivial flavor anomalies.

• Three $SU(N_f)_L$ generators. By group theory,

$$\operatorname{tr}(T_L^a\{T_L^b, T_L^c\}) = A_L \times d^{abc} \tag{S.30}$$

where the coefficient A_L counts the number of fundamental $\mathbf{N_f}$ multiplets of the $SU(N_f)_L$ minus the number of anti-fundamental $\overline{\mathbf{N_f}}$ multiplets. (In theories with non-trivial tensor multiplets, they also count with non-trivial coefficients, but fortunately we don't have them here.) For the elementary fermions

$$A_L^{\text{elem}} = A_L(\lambda) + A_L(\psi_Q) + A_L(\tilde{\psi}_Q) = 0 + N_c + 0 = N_c.$$
 (S.31)

For the composite fermions

$$A_L^{\text{comp}} = A_L(\Psi_M) + A_L(\Psi_B) + A_L(\widetilde{\Psi}_B) = N_f - 1 + 0 = N_c.$$
 (S.32)

Anomalies match.

• Three $SU(N_f)_R$ generators. Again

$$\operatorname{tr}(T_L^a\{T_R^b, T_R^c\}) = A_R \times d^{abc} \quad \text{where } A_R = \# \mathbf{N_f} - \# \overline{\mathbf{N_f}}, \tag{S.33}$$

but now we count multiplets of the $SU(N_f)_R$. For the elementary fermions

$$A_R^{\text{elem}} = A_R(\lambda) + A_R(\psi_Q) + A_R(\tilde{\psi}_Q) = 0 + 0 + N_c = N_c$$
 (S.34)

while for the composite fermions

$$A_R^{\text{comp}} = A_R(\Psi_M) + A_R(\Psi_B) + A_R(\widetilde{\Psi}_B) = N_f + 0 - 1 = N_c.$$
 (S.35)

The anomalies match.

• Two $SU(N_f)_L$ generators and one V charge. By group theory,

$$\operatorname{tr}(T_L^a T_L^b B) = \delta^{ab} \times A_{LLV} \text{ where } A_{LLV} = \sum_{\text{fermions}} V(\psi) \times \operatorname{Index}_{SU(N_f)_L}(\psi) \times \#\psi \quad (S.36)$$

where $\#\psi$ counts the color and $SU(N_f)_R$ multiplicities of the fermionic species ψ . For the elementary fermions, $A_{LLV}(\lambda) = A_{LLV}(\tilde{\psi}_Q) = 0$, hence

$$A_{LLV}^{\text{elem}} = A_{LLV}(\psi_Q) = (+1) \times \frac{1}{2} \times N_c = +\frac{N_c}{2}.$$
 (S.37)

For the composite fermions, $A_{LLV}(\Psi_M) = 0$ because M has V = 0 and $A_{LLV}(\widetilde{\Psi}_B) = 0$ because $\widetilde{\mathcal{B}}$ is a singlet of $SU(N_f)_L$, thus

$$A_{LLV}^{\text{comp}} = A_{LLV}(\Psi_B) = (+N_c) \times \frac{1}{2} \times 1 = +\frac{N_c}{2}.$$
 (S.38)

The anomalies match.

• Two $SU(N_f)_R$ generators and one V charge. Similarly, for the elementary fermions

$$A_{RRV}^{\text{elem}} = 0 + 0 + A_{RRV}(\tilde{\psi}_Q) = (-1) \times \frac{1}{2} \times N_c = -\frac{N_c}{2}$$
 (S.39)

while for the composite fermions

$$A_{RRV}^{\text{comp}} = 0 + 0 + A_{RRV}(\widetilde{\Psi}_B) (-N_c) \times \frac{1}{2} \times 1 = -\frac{N_c}{2}.$$
 (S.40)

Anomalies match.

• Two $SU(N_f)_L$ generators and one R' charge. Again, among the elementary fermions, only the quarks contribute to this anomaly (because the gauginos and the antiquarks are

 $SU(N_f)_L$ singlets), thus

$$A_{LLR'}^{\text{elem}} = A_{LLR'}(\psi_Q) = R'(\psi_Q) \times \text{Index}(\psi_Q) \times \#\psi_Q = \left(\frac{1}{N_f} - 1\right) \times \frac{1}{2} \times N_c = -\frac{N_c^2}{2N_f}.$$
(S.41)

On the composite side,

$$A_{LLR'}(\Psi_{M}) = R'(\Psi_{M}) \times \operatorname{Index}(\Psi_{M}) \times \#\Psi_{M} = \left(\frac{2}{N_{f}} - 1\right) \times \frac{1}{2} \times N_{f} = \frac{2 - N_{f}}{2},$$

$$A_{LLR'}(\Psi_{B}) = R'(\Psi_{B}) \times \operatorname{Index}(\Psi_{B}) \times \#\Psi_{B} = \left(\frac{N_{c}}{N_{f}} - 1\right) \times \frac{1}{2} \times 1 = -\frac{1}{2N_{f}},$$

$$A_{LLR'}(\widetilde{\Psi}_{B}) = 0 \quad \text{because } \operatorname{Index}(\widetilde{\Psi}_{B}) = 0,$$

$$\operatorname{net} A_{LLR'}^{\text{comp}} = \frac{2 - N_{f}}{2} - \frac{1}{2N_{f}} = -\frac{(N_{f} - 1)^{2}}{2N_{f}} = -\frac{N_{c}^{2}}{2N_{f}},$$
(S.42)

and the anomalies match.

• Two $SU(N_f)_R$ generators and one R' charge. Similarly to the LLR' anomaly, on the elementary side $A_{RRR'}(\lambda) = A_{RRR'}(\psi_Q) = 0$ and

$$A_{RRR'}^{\text{elem}} = A_{RRR'}(\tilde{\psi}_Q) = \left(\frac{1}{N_f} - 1\right) \times \frac{1}{2} \times N_c = -\frac{N_c^2}{2N_f},$$
 (S.43)

while on the composite side

$$A_{RRR'}(\Psi_{M}) = R'(\Psi_{M}) \times \operatorname{Index}(\Psi_{M}) \times \#\Psi_{M} = \left(\frac{2}{N_{f}} - 1\right) \times \frac{1}{2} \times N_{f} = \frac{2 - N_{f}}{2},$$

$$A_{LLR'}(\Psi_{B}) = 0 \quad \text{because } \operatorname{Index}(\widetilde{\Psi}_{B}) = 0,$$

$$A_{RRR'}(\widetilde{\Psi}_{B}) = R'(\Psi_{B}) \times \operatorname{Index}(\Psi_{B}) \times \#\Psi_{B} = \left(\frac{N_{c}}{N_{f}} - 1\right) \times \frac{1}{2} \times 1 = -\frac{1}{2N_{f}},$$

$$\operatorname{net} A_{RRR'}^{\text{comp}} = \frac{2 - N_{f}}{2} - \frac{1}{2N_{f}} = -\frac{(N_{f} - 1)^{2}}{2N_{f}} = -\frac{N_{c}^{2}}{2N_{f}},$$
(S.44)

and the anomalies match.

It remains to calculate and compare the purely abelian anomalies involving the net quark number V and the R' charge. By charge conjugation symmetry, the anomalies involving odd

powers of V and even powers of R' are automatically zero, so we need to check only the remaining tr(VVR'), tr(R'R'R'), and tr(R') anomalies.

• Two V charges and one R' charge. On the elementary side, the gauginos do not contribute to this anomaly while the quarks and the antiquarks contribute

$$A_{VVR'}(\psi_Q) = A_{VVR'}(\tilde{\psi}_Q) = V^2 \times R' \times \# = (\pm 1)^2 \times \left(\frac{1}{N_f} - 1\right) \times N_c N_f = -N_c^2,$$
(S.45)

thus net $A_{VVR'}^{\text{elem}} = -2N_c$. On the composite side, the mesons do not contribute (because of V = 0) while the baryons and the antibaryons contribute

$$A_{VVR'}(\Psi_B) = A_{VVR'}(\widetilde{\Psi}_B) = V^2 \times R' \times \# = (\pm N_c)^2 \times \left(\frac{N_c}{N_f} - 1\right) \times N_f = -N_c^2$$

so the net composite anomaly $A_{VVR'}^{\text{comp}} = -2N_c^2$ matches the net elementary anomaly.

• Three R' charges. This time all fermionic species contribute to this anomaly. On the elementary side,

$$A_{R'R'R'}(\lambda) = R'^{3}(\lambda) \times \#\lambda = (+1)^{3} \times (N_{c}^{2} - 1) = N_{c}^{2} - 1,$$

$$A_{R'R'R'}(\psi_{Q}) = R'^{3}(\psi_{Q}) \times \#\psi_{Q} = \left(\frac{1}{N_{f}} - 1\right)^{3} \times N_{c}N_{f} = -\frac{N_{c}^{4}}{N_{f}^{2}},$$

$$A_{R'R'R'}(\tilde{\psi}_{Q}) = R'^{3}(\tilde{\psi}_{Q}) \times \#\tilde{\psi}_{Q} = \left(\frac{1}{N_{f}} - 1\right)^{3} \times N_{c}N_{f} = -\frac{N_{c}^{4}}{N_{f}^{2}},$$

$$\text{net } A_{R'R'R'}^{\text{elem}} = N_{c}^{2} - 1 - \frac{2N_{c}^{4}}{N_{f}^{2}} = -N_{f}^{2} + 6N_{f} - 12 + \frac{8}{N_{f}} - \frac{2}{N_{f}^{2}},$$

$$(S.46)$$

while on the composite side

$$A_{R'R'R'}(\Psi_{M}) = R'^{3}(\Psi_{M}) \times \#\Psi_{M} = \left(\frac{2}{N_{f}} - 1\right)^{3} \times N_{f}^{2} = -\frac{(N_{f} - 2)^{3}}{N_{f}},$$

$$A_{R'R'R'}(\Psi_{B}) = R'^{3}(\Psi_{B}) \times \#\Psi_{B} = \left(\frac{N_{c}}{N_{f}} - 1\right)^{3} \times N_{f} = -\frac{1}{N_{f}^{2}},$$

$$A_{R'R'R'}(\widetilde{\Psi}_{B}) = R'^{3}(\widetilde{\Psi}_{B}) \times \#\widetilde{\Psi}_{B} = \left(\frac{N_{c}}{N_{f}} - 1\right)^{3} \times N_{f} = -\frac{1}{N_{f}^{2}},$$

$$\text{net } A_{R'R'R'}^{\text{comp}} = -\frac{(N_{f} - 2)^{3}}{N_{f}} - \frac{2}{N_{f}^{2}} = -N_{f}^{2} + 6N_{f} - 12 + \frac{8}{N_{f}} - \frac{2}{N_{f}^{2}},$$

$$(S.47)$$

and the net anomalies match.

• The trace anomaly, a single R' charge. For the elementary fermions,

$$A_{R'}(\lambda) = R'(\lambda) \times \#\lambda = (+1) \times (N_c^2 - 1) = N_c^2 - 1,$$

$$A_{R'}(\psi_Q) = R'(\psi_Q) \times \#\psi_Q = \left(\frac{1}{N_f} - 1\right) \times N_c N_f = -N_c^2,$$

$$A_{R'}(\tilde{\psi}_Q) = R(\tilde{\psi}_Q) \times \#\tilde{\psi}_Q = \left(\frac{1}{N_f} - 1\right) \times N_c N_f = -N_c^2,$$

$$\text{net } A_{R'R'R'}^{\text{comp}} = -N_c^2 - 1,$$
(S.48)

while on the composite side

$$A_{R'}(\Psi_{M}) = R'(\Psi_{M}) \times \#\Psi_{M} = \left(\frac{2}{N_{f}} - 1\right) \times N_{f}^{2} = -(N_{f} - 2)N_{f},$$

$$A_{R'}(\Psi_{B}) = R'(\Psi_{B}) \times \#\Psi_{B} = \left(\frac{N_{c}}{N_{f}} - 1\right) \times N_{f} = -1,$$

$$A_{R'}(\widetilde{\Psi}_{B}) = R'(\widetilde{\Psi}_{B}) \times \#\widetilde{\Psi}_{B} = \left(\frac{N_{c}}{N_{f}} - 1\right) \times N_{f} = -1,$$

$$\text{net } A_{R'R'R'}^{\text{comp}} = -N_{f}^{2} + 2N_{f} - 2 = -N_{c}^{2} - 1,$$

$$(S.49)$$

and the trace anomalies match too.

This completes our check of the 't Hooft's anomaly matching conditions.