PHY-396 T: SUSY Solutions for problem set #9.

Problem 2(a):

In the absence of a superpotential, all chiral superfields are moduli except those eaten up by
the supersymmetric Higgs mechanism. Generic VEVs of Ny > N, squarks and antisquarks
break the SU(N.) gauge symmetry down to nothing, so all N? —1 gauge fields become massive
and hence N? — 1 chiral superfields are eaten up. The number of the remaining moduli fields

is
#moduli = 2N;N, — (N? —1), (S.1)

which for Ny = N, + 1 happens to be 2(N. + 1) N, — N24+1=N2?2+2N.+1= NJ%.

Problem 2(b):

In matrix notations, the squarks ) form an N, X Ny matrix while the antisquark matrix @ is
Ng x Ne. For N. < Ny, the matrix product M = @Q has rank no greater than N., and since
M itself is Ny x Ny, its determinant must vanish, det(M) = 0.

Now consider the meson-baryon product

' ~ e 1
MypBl = Qpe x Q5QF - QP el v x A€ en - (S.2)

The middle factor here is the antisymmetrized product of N +1 = Ny > N, squark flavors.
By Bose statistics, their colors have to be antisymmetrized as well, but we have only N, = N

colors so that’s not possible. Consequently,
Q;Q‘}i---@‘}’;efﬁ'"ﬁ“ = 0 for any colors — /\/lff/Bf, = 0. (S.3)

Similarly, B/ M = 0.

To prove the last relation minor(./\/l)ff, = ngf/, consider the N x N sub-matrix Q") of

the quark matrix which contains all the colors but only N = N; — 1 flavors — all except the



f’. The determinant of this square sub-matrix is

det (Q()\N)> = ecl...cNQil .. M .. Q;z

)t
= %Ef Ji fN€c1~-~CNQ}:1 ...... Q;fj\\’r (5.4)

Similarly, the N x N square sub-matrix @(f) of the antisquark matrix containing all flavors

except f has determinant

det (ém) — (—1)/ U x B (S.5)
Since the sub-matrices @(f) and Q()\N) include all the colors, their product
MO = @(X)Q(f') (S.6)

is an N x N sub-matrix of the meson matrix, including all antiquark flavors except f and all

quark flavors except f’. By definition of the minor,

minor(./\/l)ff/ = (—1)f_f, x det (M(X)(f/)>

— (—1)/F x det (@(f)) % det (Qom) (S.7)
= B/ x B

Problem 2(c):

Let’s pick a flavor basis in which the meson matrix is diagonal, M = diag(my, ma, ... ,me).

Since det(M) = 0, one eigenvalue must vanish, say m; = 0; the other eigenvalues could vanish

too, but generically they don’t, so let’s assume mso, . .. S My, #0.

The condition M ¢ f/Bf " makes the B/ vector an eigenvector of the meson matrix corre-

sponding to the zero eigenvalue. For the M = diag(0, ma,...,m Nf)> this means
b
B = O (S.8)
0



Similarly, the condition B/ M #f restricts the antibaryon vector to
B = (13,0,...,0). (S.9)

Now consider the last condition (2). Given the restrictions we have already established, we

automatically have
minor(M)?/ = 0 = Bf x B for all (f, ') pairs except (1,1). (S.10)

On the other hand, for f = f/ = 1, we have one more constraint
Ny
minor(M) = [ m; = B' x B! = bb. (S.11)
f=2

Altogether, for a given meson matrix M with a zero eigenvalue, the constraints (2) fix all the

baryonic and antibaryonic moduli except one: the ratio I;/ b.

Note that this result does not depend on the M matrix being actually diagonal, we used
the diagonal form only to make our algebra simple. For a non-diagonal M with one zero
eigenvalue, we have more complicated baryon and antibaryon vectors than (S.8) and (S.9)
— they are the column eigenvector and the row eigenvector of M corresponding to the zero
eigenvalue — but the net number of the un-fixed baryonic moduli remains the same: For a
given meson matrix, the constraints (2) fix all the baryons and antibaryons in terms of just

one free modulus.

So let’s count the un-fixed moduli. There are NJ% mesons M s subject to one constraint
det(M) = 0, which gives us NJ% — 1 independent mesonic moduli. Given all these moduli, we
need one more modulus to determine the baryons and the antibaryons. Thus, the net number
of independent moduli is N}% — which is precisely the number of the chiral multiplets left

un-eaten by the Higgs mechanism, cf. part (a).



Problem 2(d):
In any SUSY vacuum of the effective theory we must have 0W/d(any chiral SF) = 0. In

particular,
ow ,
=, = CM fo == 0,
OB/ Ir
gg‘; — CB' M, = 0, (S.12)
ai/lmjif/ = C(gf x B — minor(./\/l)ffl> = 0,

which reproduces three out of four constraints (2). The remaining constraint det(M) follows

from these three: For any Ny x Ny matrix,
> " minor (M) Myp = Ny det(M), (S.13)
fr
but given the chiral ring equations (S.12),
Zminor(/\/l)ffl./\/lffr = ngBf/Mff, = 0, (S.14)
Ir Ir
hence det(M) = 0.

Problem 2(x):
Without loss of generality, we may use the SU(Ny)r x SU(Ny)g flavor symmetries of the
effective theory to choose a flavor basis where the (M), matrix is diagonal. As we saw in

part (c), this means
(M) = diag(0,ma,....my,),  B) =] . |. <z§> = (b,0,...,0).  (S.15)

Now let’s expand the moduli superfields around this point:

My = (M + 6Myp(y.0), B = (B + 6B/(y.0), B = <z§>f + 687 (y.0)

(S.16)
without imposing any constraints on the 6 M, B, 6B superfields. Instead, some of these 2NJ% +
2N superfields get their masses from the superpotential (4).



Indeed, expanding the determinant of the (M) + § M matrix, we obtain

det(M +0M) = 0 + [ mix oM
i>1
+ 3 I mi x (IMu1oMy; = SMizoMp) + O(BMP),

J>1i#1j5

(S.17)

while

Bfof,gf/ =0 + b(~)><5./\/l11
+ Y my x OBIOB) 4+ bx Yy dMoB + bx Y 6BISM; (g1g)

Jj>1 J J
+ cubic terms.

Combining these expansions and using b X b = mg X ---my,, we obtain

ol N2 b (oM,
et (%)
J

j=2
~ N ) bg (819)
+ C(bx 6B + b0 x B' =Y — x My | x oM
— My
1>1
+ cubic and higher-order terms.

Each term on the first line here seems to give mass to 4 chiral superfields, namely 6. M 1, 6M;;,

§B7, and S8 However, the 2 x 2 matrix

bb
b
b Tle

has rank = 1 (for generic b, b, and m;), so only 2 combinations of these fields become massive
while the other 2 remain massless. Combining Ny — 1 terms on the first line of (S.19) makes
for 2(Ny — 1) massive fields, and two more fields become massive thanks to the term on the
second line, namely the My and one combination of the 6B, 6B, and M (for i # 1).
Altogether, 2Ny combinations of the oM sy, 6Bf, and 6B/ fields become massive while the

remaining N}% combinations remain massless.



The above counting of massive fields works in the generic case of b # 0, b # 0, and
all m; # 0 (for j > 1), or in the basis-independent terms, for (B) # 0, <l§> # 0, and
rank((M)) = Ny — 1. But at some special points of the moduli space, some of the mass terms

may vanish, so we end up with more than NJ% massless fields.

For example, suppose (B) = <l§> = 0 while rank((M)) < Ny — 3, which in the eigenbasis
of (M) means b = b = 0 and mp = m3 = 0. Consequently, the second line of eq. (S.19)
vanishes, while on the first line we get non-zero mass terms only for m; # 0. Altogether,

2rank((M)) fields become massive, while N}% + 2Ny — 2rank((M)) fields remain massless.

In particular, at the special point (B) = <l§> = (M) = 0 — which classically corresponds
to no squark VEVs at all — the superpotential (4) contains no mass terms at all, so all the

NJ% + 2Ny moduli fields are massless.

Problem 2(e):
Here is the table of the SU(Ny)r x SU(Nf)gp x U(1)y x U(1)4 quantum numbers of all the

quarks, antiquarks, mesons, baryons, and antibaryons:

QN

fields SUNg)L | SUNpr | U)p | U(l)a
Q N 1 +1 +1
Q 1 N —1 +1
M N N 0 +2
B N; 1 N, N,
B 1 N —N, +N,

A3Ne=Ny 1 1 0 +2Ny (S.20)

On the last line here, A3Ne=Ns o exp(2mit,) is neutral with respect to the anomaly-free
symmetries SU(Ny) xSU(Ny)rxU(1)p but has a non-zero charge +2N; under the anomalous

axial symmetry. This charge follows from the shift of the vacuum angle needed to cancel the



axial anomaly:
P = QWY P o N O = O 420 = ANy 2Nriap3Ne=Ny (g 91)

As to the pure-R symmetry,
e All scalars, elementary or composite, have R-charge zero.
e All their fermionic superpartners have R-charge —1.
e The gauginos have R-charge +1.

e The instanton factor A3Ne=N7 o exp(2miT,) has R-charge —2N; + 2N, = —2.

Problem 2(f):
The effective superpotential must have R-charge +2 and be neutral/invariant under all the
other flavor symmetries. Since all the moduli scalars Mg, B/ l, B/ are R-neutral, the R—

charge of the effective superpotential must come from the A, thus
Wege (M, B, B; A3Ne=Nr) = ANi=3Ne s H(M, B, B) (S.22)

for some holomorphic function H of the moduli scalars. (Note: ANs=3Ne — A1=2Ne ) Next,
the only holomorphic SU(Ny)r, x SU(Ny)g invariant combinations of the moduli fields M s,
Bf, and B are X = ngff/Bf/ and Y = det(M), hence H depends on the moduli only via

these two invariants, thus
Wt (M, B, B APNVr) = AN=3Ne s (X = BIM B! ) (Y = det(M))  (6)

for some holomorphic function F'(X,Y’) of two arguments. Note that the two SU(Ny)r x
SU(Ny)p invariants X and Y have zero net quark numbers, so we don’t get additional restric-

tions from requiring the U(1)y invariance of the superpotential.

It remains to consider the axial symmetry U(1)4. Under this symmetry both X and Y
invariants have charge A = +2Ny while the overall factor ANs=3Ne has charge A = —2N 7. Con-

sequently, to assure the U(1)4 invariance of the superpotential (6), the holomorphic function



F(X,Y) must be a homogeneous function of degree 1,

F(aX,aY) = ax F(X,Y). (S.23)

In principle, there is an infinite number of such functions. Indeed, for any holomorphic

function f(z) of a single argument,
F(X,Y) = X x f(Y/X) is homogeneous of degree = 1. (S.24)

However, in the context of superpotential (6) we have an additional physical constraint: For
large values of the moduli, the Higgsed SQCD is approximately semi-classical, so the effective
superpotential should not have any singularities in this regime. Moreover, large moduli does not
mean large Y = det(M) or large X = B/ M f f/Bf " to the contrary, we expect these invariants
to stay small if not exactly zero due to classical constraints. Therefore, the holomorphic
homogeneous function F'(X,Y) should not have any singularities at all, and the only such

functions are polynomials of appropriate degree. In out case,
F(X,)Y) = aX + bY (S.25)

for some numeric constants a and b, and hence

- B a ~ / b
Weﬁ(M,B, B; A3Ne Nf) = Gvm X Bfof,Bf + BN, x det(M), exactly. (S.26)
The classical superpotential (4) indeed has this form for b = —a.

Note that the powers of A here are completely fixed by the R—symmetry, which eliminates
any instanton corrections carrying higher powers of A. Consequently, in the absence of tree-
level masses or Yukawa couplings, the semiclassical effective superpotential (4) is exact and

does not suffer any quantum corrections whatsoever.

In other words, the chiral ring of SQCD with Ny = N.+1 does not suffer from any quantum

corrections.



Problem 3(a):

Let’s call the mixed RA charge R'. A quick look at the table (S.20) and the list of pure-R

charges below immediately identifies the charge generating the symmetry (8) as

R':R+LA.

Ny

(S.27)

The instanton parameter A3Ne=Ns has A = 42N ¢ and R = —2, hence R’ = 0, which indicates

that the R’ charge is anomaly free.

Alternatively, you may calculate the color anomaly of the R’ charge directly from eq. (8)

for the fermion charges:

anomaly = R'(\) x 2Index(\) + R'(¢) x 2Index(¢)) + R'(¥) x 2Index(v))
N, N,
= (+1) x 2N, — F;fo - F;fo
— 42N, = N, — N. = 0.
Problem 3(b):
QN
fields /
SU(Ny)r, SU(Ny)r V' charge R’ charge #colors
A 1 1 0 +1 N2 -1
U N¢ 1 +1 N% —1 N,
Do 1 N¢ —1 N% —1 N,
Uy Ny Ny 0 le —1 1
Uy N¢ 1 +N, N1 1
U 1 N¢ —N, N — 1 1

(S.28)

(S.29)



Problem 2(c):

Let’s calculate the non-trivial flavor anomalies.

e Three SU(Ny)r, generators. By group theory,
tr(Tg{Tg,Tf}) = Ay x d*° (S.30)
where the coefficient A7, counts the number of fundamental N¢ multiplets of the SU(Ny)r,
minus the number of anti-fundamental N¢ multiplets. (In theories with non-trivial tensor
multiplets, they also count with non-trivial coefficients, but fortunately we don’t have
them here.) For the elementary fermions
Aslem — Ap () + Ar(vg) + AL(Wg) = 0 + Ne + 0 = N,. (S.31)
For the composite fermions

Azomp = Ap(Wy) + An(Up) + AL(\TJB) =Ny —1+0 = N,. (S.32)

Anomalies match.

e Three SU(Ny)g generators. Again
tr(T8{Th, TE}) = Ag x d® where Ap = #N¢ — #Np, (S.33)
but now we count multiplets of the SU(Ny)g. For the elementary fermions
ASem — Ap(\) + Ar(vg) + Ap(dg) = 0 + 0 + N, = N, (S.34)
while for the composite fermions
A = Ap(Wy) + Ag(¥p) + Ap(¥p) = Ny + 0 — 1 = N..  (S.35)

The anomalies match.
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e Two SU(Ny)r generators and one V' charge. By group theory,

tr(TETEB) = 6 x Appy where Appy = Y V(¥) x SIUH((}\%LW) x #ip (S.36)

fermions

where #1) counts the color and SU(Ny)r multiplicities of the fermionic species 1. For

the elementary fermions, Arzy(\) = Arzyv (o) = 0, hence

N,
= (S.37)

1
AR = Appv(g) = (+1) x 3 X Ne = +

For the composite fermions, Arry (¥ys) = 0 because M has V' = 0 and ALLV(CI}B) =0
because B is a singlet of SU(N )L, thus

1 N,
ATV = Arv(¥p) = (+Ne) x 5 x 1 =+ (S.38)
The anomalies match.

e Two SU(Ny)r generators and one V' charge. Similarly, for the elementary fermions

. 1 N,
AT = 0 + 0 + Agppv(g) = (—1) x g X Ne = —— (5-39)

while for the composite fermions

1 N
5

ARRP = 0 + 0 + Aggyv(¥p) (—N,) x g x1l=- (S.40)

Anomalies match.

o Two SU(Ny)r, generators and one R’ charge. Again, among the elementary fermions,

only the quarks contribute to this anomaly (because the gauginos and the antiquarks are

11



SU(Ny), singlets), thus

1 1 N?
Atk = Auuwlvg) = Rg)xTugex(v) g = (5 =1) xgxNe =~
(S.41)
On the composite side,
2 1 2—N
ALLR’(\I]M) = R/(\I/M) X In%ex(\I/M) X #\I/M = (Ff — 1) X 5 X Nf = 5 / s
A (Up) = R(Up) x Index(Up) x #05 = (D€ _1) xix1 = -1
LLr(YB) = B dex(Vp B = N, 5 - TaNg
ALLR/(\TIB) = 0 because In%ex(\ffB):O,
2—N Ny —1)? 2
net AT — g o Wm0 Mo
2 2N, 2N, 2N,
(S.42)

and the anomalies match.

o Two SU(Ny)g generators and one R’ charge. Similarly to the LLR’' anomaly, on the
elementary side Aprr/(\) = Arrr(¥g) = 0 and
1

. 1
ASE = Arrr (Vo) = (F - 1) XX Ne =
!

NE
2N’

(S.43)

while on the composite side

2 1 2—N
Arrr (Tam) = R'(¥yr) X IH%GX(‘I’M) X #FWVy = (F - 1) X 5 % Ny = L
f

Arrr(Up) = 0 because In%ex(@B) =0,

Apni(Tp) = R(Up) x Index(Ug) x 05 = (e 1) xix1 = ——1

RERATE) = ATE) * MgeTe 5=\ > ¥ T TaNg
2o Ny 1 (Ny —1)? N

net AP = S G :
RRE 2 2N 2N 2Ny

(S.44)

and the anomalies match.

It remains to calculate and compare the purely abelian anomalies involving the net quark

number V and the R’ charge. By charge conjugation symmetry, the anomalies involving odd

12



powers of V and even powers of R’ are automatically zero, so we need to check only the

remaining tr(VV R'), tr(R'R'R’), and tr(R') anomalies.

e Two V charges and one R’ charge. On the elementary side, the gauginos do not contribute

to this anomaly while the quarks and the antiquarks contribute

- 1
Avvr(Wg) = Avvr(bg) = VEX R x# = (£1)? x <Ff - 1) x N.Ny = —NZ,
(S.45)
thus net A%}E{}HR, = —2N,. On the composite side, the mesons do not contribute (because

of V'=0) while the baryons and the antibaryons contribute

T N,
Avvr(Vp) = Avyr(¥p) = VX R x# = (£N.)* x (F; _ 1) x Nf = —N?

so the net composite anomaly A?{/HE, — —2N?2 matches the net elementary anomaly.

e Three R’ charges. This time all fermionic species contribute to this anomaly. On the

elementary side,

Appr(A\) = RPO\) x#X = (+1)3 x (N> —-1) = N?—1,
/3 1 s N4
C
Arrr(Wq) = R°(Vq) X #1q = <Ff 1) x NeNyp = —FJ%,
3 4
- - - 1 N (S.46)
Aprr(bq) = RP(dQ) x #bq = <F_1) X NNy = =55
/ !
2N? 8 2
1 2 2
netAe?}rg’R’ = N¢ _I_T}%C = —Nf+6Nf—12+Ff—F}%a
while on the composite side
3 3
2 (N —2)
Apipr o (U — RV Uy = (= —1 N2 — _ Y
rrrR(YM) = R°(Var) X #Vy (Nf ) x Ny N
5 1
Aprpr(¥p) = RP(Up) x #Vp = (N _1) xNp =~z
/ (S.47)
~ N, ; 1
Aprr(¥p) = RP(Up) x #¥p = (F_l) x Np = N
Ny —2)3 8 2
comp ( f .
netAR/R/R/— Tf_N—J%—_Nf‘I’6Nf—12+Ff—N—J%’



and the net anomalies match.
e The trace anomaly, a single R’ charge. For the elementary fermions,
Ar(\) = RO\ x #\ = (+1) x (N2 —1) = N2 -1,

Ap(vg) = R'(pq) x #ig = (L—l) X NNy = —NZ,

N
1f (S.48)
Anli) = Btlg) x #ig = (F —1) x Ny = -2,
net Ay = —NZ —1,
while on the composite side
2
AR/(\I/M) = R/(\I/M) X #\IIM = (Ff — 1) X NJ% = —(Nf —2)Nf,
ARr(\IfB) = R/(\I/B) X #\IIB = <& — 1) XNy, = —1
Ny / ’ (S.49)
~ ~ ~ N,
AR’(\I’B) = R/(\I/B) X #\IIB = <F;—1) XNf = —1,
net A = —N7 + 2Ny —2 = —NZ — 1,

and the trace anomalies match too.

This completes our check of the 't Hooft’s anomaly matching conditions.
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