
PHY–396 T: SUSY Solutions for problem set #9.

Problem 2(a):

In the absence of a superpotential, all chiral superfields are moduli except those eaten up by

the supersymmetric Higgs mechanism. Generic VEVs of Nf > Nc squarks and antisquarks

break the SU(Nc) gauge symmetry down to nothing, so all N2
c −1 gauge fields become massive

and hence N2
c − 1 chiral superfields are eaten up. The number of the remaining moduli fields

is

#moduli = 2NfNc − (N2
c − 1), (S.1)

which for Nf = Nc + 1 happens to be 2(Nc + 1)Nc −N2
c + 1 = N2

c + 2Nc + 1 = N2
f .

Problem 2(b):

In matrix notations, the squarks Q form an Nc ×Nf matrix while the antisquark matrix Q̃ is

Nf ×Nc. For Nc < Nf , the matrix product M = Q̃Q has rank no greater than Nc, and since

M itself is Nf ×Nf , its determinant must vanish, det(M) = 0.

Now consider the meson-baryon product

Mff ′Bf ′

= Q̃f,c ×Qc
fQ

c1
f1
· · ·QcN

fN
ǫf

′f1···fN ×
1

N !
ǫc1···cN . (S.2)

The middle factor here is the antisymmetrized product of N + 1 = Nf > Nc squark flavors.

By Bose statistics, their colors have to be antisymmetrized as well, but we have only Nc = N

colors so that’s not possible. Consequently,

Qc
fQ

c1
f1
· · ·QcN

fN
ǫf

′f1···fN = 0 for any colors =⇒ Mff ′Bf ′

= 0. (S.3)

Similarly, B̃fMff ′ = 0.

To prove the last relation minor(M)ff
′

= B̃fBf ′

, consider the N ×N sub-matrix Q(\f ′) of

the quark matrix which contains all the colors but only N = Nf − 1 flavors — all except the
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f ′. The determinant of this square sub-matrix is

det
(
Q(\f ′)

)
= ǫc1···cNQ

1
c1 · · ·Q

f ′

c · · ·QcN
fN

=
(−1)f

′−1

N !
ǫf

′f1···fN ǫc1···cNQ
1
c1 · · · · · ·Q

cN
fN

= (−1)f
′−1 × Bf ′

(S.4)

Similarly, the N × N square sub-matrix Q̃(\f) of the antisquark matrix containing all flavors

except f has determinant

det
(
Q̃(\f)

)
= (−1)f−1 × B̃f . (S.5)

Since the sub-matrices Q̃(\f) and Q(\f ′) include all the colors, their product

M(\f)(\f ′) = Q̃(\f)Q(\f ′) (S.6)

is an N ×N sub-matrix of the meson matrix, including all antiquark flavors except f and all

quark flavors except f ′. By definition of the minor,

minor(M)ff
′

= (−1)f−f ′

× det
(
M(\f)(\f ′)

)

= (−1)f−f ′

× det
(
Q̃(\f)

)
× det

(
Q(\f ′)

)

= B̃f × Bf ′

.

(S.7)

Problem 2(c):

Let’s pick a flavor basis in which the meson matrix is diagonal, M = diag(m1, m2, . . . , mNf
).

Since det(M) = 0, one eigenvalue must vanish, say m1 = 0; the other eigenvalues could vanish

too, but generically they don’t, so let’s assume m2, . . . , mNf
6= 0.

The condition Mff ′Bf ′

makes the Bf ′

vector an eigenvector of the meson matrix corre-

sponding to the zero eigenvalue. For the M = diag(0, m2, . . . , mNf
), this means

Bf ′

=




b

0
...

0




(S.8)
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Similarly, the condition B̃fMff ′ restricts the antibaryon vector to

B̃f =
(
b̃, 0, . . . , 0

)
. (S.9)

Now consider the last condition (2). Given the restrictions we have already established, we

automatically have

minor(M)ff
′

= 0 = B̃f × Bf ′

for all (f, f ′) pairs except (1, 1). (S.10)

On the other hand, for f = f ′ = 1, we have one more constraint

minor(M)1,1 =

Nf∏

f=2

mf = B̃1 × B1 = b̃b. (S.11)

Altogether, for a given meson matrix M with a zero eigenvalue, the constraints (2) fix all the

baryonic and antibaryonic moduli except one: the ratio b̃/b.

Note that this result does not depend on the M matrix being actually diagonal, we used

the diagonal form only to make our algebra simple. For a non-diagonal M with one zero

eigenvalue, we have more complicated baryon and antibaryon vectors than (S.8) and (S.9)

— they are the column eigenvector and the row eigenvector of M corresponding to the zero

eigenvalue — but the net number of the un-fixed baryonic moduli remains the same: For a

given meson matrix, the constraints (2) fix all the baryons and antibaryons in terms of just

one free modulus.

So let’s count the un-fixed moduli. There are N2
f mesons Mff ′ subject to one constraint

det(M) = 0, which gives us N2
f − 1 independent mesonic moduli. Given all these moduli, we

need one more modulus to determine the baryons and the antibaryons. Thus, the net number

of independent moduli is N2
f — which is precisely the number of the chiral multiplets left

un-eaten by the Higgs mechanism, cf. part (a).
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Problem 2(d):

In any SUSY vacuum of the effective theory we must have ∂W/∂(any chiral SF) = 0. In

particular,

∂W

∂B̃f
= CMff ′Bf ′

= 0,

∂W

∂Bf ′
= CB̃fMff ′ = 0,

∂W

∂Mff ′

= C
(
B̃f × Bf ′

− minor(M)ff
′

)
= 0,

(S.12)

which reproduces three out of four constraints (2). The remaining constraint det(M) follows

from these three: For any Nf ×Nf matrix,

∑

ff ′

minor(M)ff
′

Mff ′ = Nf det(M), (S.13)

but given the chiral ring equations (S.12),

∑

ff ′

minor(M)ff
′

Mff ′ =
∑

ff ′

B̃fBf ′

Mff ′ = 0, (S.14)

hence det(M) = 0.

Problem 2(⋆):

Without loss of generality, we may use the SU(Nf )L × SU(Nf )R flavor symmetries of the

effective theory to choose a flavor basis where the 〈M〉ff ′ matrix is diagonal. As we saw in

part (c), this means

〈M〉 = diag(0, m2, . . . , mNf
), 〈B〉 =




b

0
...

0



,

〈
B̃
〉

=
(
b̃, 0, . . . , 0). (S.15)

Now let’s expand the moduli superfields around this point:

Mff ′ = 〈M〉ff ′ + δMff ′(y, θ), Bf = 〈B〉f + δBf (y, θ), B̃f =
〈
B̃
〉f

+ δB̃f (y, θ)

(S.16)

without imposing any constraints on the δM, δB, δB̃ superfields. Instead, some of these 2N2
f +

2Nf superfields get their masses from the superpotential (4).
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Indeed, expanding the determinant of the 〈M〉+ δM matrix, we obtain

det
(
M+ δM

)
= 0 +

∏

i>1

mi × δM11

+
∑

j>1

∏

i6=1,j

mi ×
(
δM11δMjj − δM1jδMj1

)
+ O(δM3),

(S.17)

while

BfMff ′B̃f ′

= 0 + bb̃× δM11

+
∑

j>1

mj × δBjδB̃j + b×
∑

j

δM1jδB̃
j + b̃×

∑

j

δBjδMj1

+ cubic terms.

(S.18)

Combining these expansions and using b× b̃ = m2 × · · ·mNf
, we obtain

W = C ×

Nf∑

j=2

(
δM1j , δB

j
)( bb̃

mj
b

b̃ mj

)(
δMj1

δB̃j

)

+ C

(
b× δB̃1 + b̃δ × B1 −

∑

i>1

bb̃

mi
× δMii

)
× δM11

+ cubic and higher-order terms.

(S.19)

Each term on the first line here seems to give mass to 4 chiral superfields, namely δMj1, δM1j ,

δBj , and δB̃j . However, the 2× 2 matrix

(
bb̃
mj

b

b̃ mj

)

has rank = 1 (for generic b, b̃, and mj), so only 2 combinations of these fields become massive

while the other 2 remain massless. Combining Nf − 1 terms on the first line of (S.19) makes

for 2(Nf − 1) massive fields, and two more fields become massive thanks to the term on the

second line, namely the δM11 and one combination of the δB1, δB̃1, and δMii (for i 6= 1).

Altogether, 2Nf combinations of the δMff ′ , δBf , and δB̃f fields become massive while the

remaining N2
f combinations remain massless.
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The above counting of massive fields works in the generic case of b 6= 0, b̃ 6= 0, and

all mj 6= 0 (for j > 1), or in the basis-independent terms, for 〈B〉 6= 0,
〈
B̃
〉

6= 0, and

rank(〈M〉) = Nf − 1. But at some special points of the moduli space, some of the mass terms

may vanish, so we end up with more than N2
f massless fields.

For example, suppose 〈B〉 =
〈
B̃
〉
= 0 while rank(〈M〉) ≤ Nf − 3, which in the eigenbasis

of 〈M〉 means b = b̃ = 0 and m2 = m3 = 0. Consequently, the second line of eq. (S.19)

vanishes, while on the first line we get non-zero mass terms only for mj 6= 0. Altogether,

2 rank(〈M〉) fields become massive, while N2
f + 2Nf − 2 rank(〈M〉) fields remain massless.

In particular, at the special point 〈B〉 =
〈
B̃
〉
= 〈M〉 = 0 — which classically corresponds

to no squark VEVs at all — the superpotential (4) contains no mass terms at all, so all the

N2
f + 2Nf moduli fields are massless.

Problem 2(e):

Here is the table of the SU(Nf )L × SU(Nf )R × U(1)V × U(1)A quantum numbers of all the

quarks, antiquarks, mesons, baryons, and antibaryons:

fields

QN

SU(Nf )L SU(Nf )R U(1)B U(1)A

Q Nf 1 +1 +1

Q̃ 1 Nf −1 +1

M Nf Nf 0 +2

B Nf 1 +Nc +Nc

B̃ 1 Nf −Nc +Nc

Λ3Nc−Nf 1 1 0 +2Nf (S.20)

On the last line here, Λ3Nc−Nf ∝ exp(2πiτw) is neutral with respect to the anomaly-free

symmetries SU(Nf )L×SU(Nf )R×U(1)B but has a non-zero charge +2Nf under the anomalous

axial symmetry. This charge follows from the shift of the vacuum angle needed to cancel the
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axial anomaly:

ψα → eiaψα, ψ̃α → eiaψ̃α, Θ → Θ+ 2a =⇒ Λ3Nc−Nf → e2Nf iaΛ3Nc−Nf . (S.21)

As to the pure-R symmetry,

• All scalars, elementary or composite, have R-charge zero.

• All their fermionic superpartners have R-charge −1.

• The gauginos have R-charge +1.

• The instanton factor Λ3Nc−Nf ∝ exp(2πiτw) has R-charge −2Nf + 2Nc = −2.

Problem 2(f):

The effective superpotential must have R-charge +2 and be neutral/invariant under all the

other flavor symmetries. Since all the moduli scalars Mff ′ , Bf ′

, B̃f are R-neutral, the R–

charge of the effective superpotential must come from the Λ, thus

Weff

(
M,B, B̃; Λ3Nc−Nf

)
= ΛNf−3Nc ×H(M,B, B̃) (S.22)

for some holomorphic function H of the moduli scalars. (Note: ΛNf−3Nc = Λ1−2Nc .) Next,

the only holomorphic SU(Nf )L×SU(Nf )R invariant combinations of the moduli fields Mff ′ ,

B̃f , and Bf ′

are X = B̃fMff ′Bf ′

and Y = det(M), hence H depends on the moduli only via

these two invariants, thus

Weff

(
M,B, B̃; Λ3Nc−Nf

)
= ΛNf−3Nc × F

((
X = B̃fMff ′Bf ′

)
,
(
Y = det(M)

))
(6)

for some holomorphic function F (X, Y ) of two arguments. Note that the two SU(Nf )L ×

SU(Nf )R invariants X and Y have zero net quark numbers, so we don’t get additional restric-

tions from requiring the U(1)V invariance of the superpotential.

It remains to consider the axial symmetry U(1)A. Under this symmetry both X and Y

invariants have charge A = +2Nf while the overall factor ΛNf−3Nc has charge A = −2Nf . Con-

sequently, to assure the U(1)A invariance of the superpotential (6), the holomorphic function
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F (X, Y ) must be a homogeneous function of degree 1,

F (αX, αY ) = α× F (X, Y ). (S.23)

In principle, there is an infinite number of such functions. Indeed, for any holomorphic

function f(z) of a single argument,

F (X, Y ) = X × f(Y/X) is homogeneous of degree = 1. (S.24)

However, in the context of superpotential (6) we have an additional physical constraint: For

large values of the moduli, the Higgsed SQCD is approximately semi-classical, so the effective

superpotential should not have any singularities in this regime. Moreover, large moduli does not

mean large Y = det(M) or largeX = B̃fMff ′Bf ′

— to the contrary, we expect these invariants

to stay small if not exactly zero due to classical constraints. Therefore, the holomorphic

homogeneous function F (X, Y ) should not have any singularities at all, and the only such

functions are polynomials of appropriate degree. In out case,

F (X, Y ) = aX + bY (S.25)

for some numeric constants a and b, and hence

Weff

(
M,B, B̃; Λ3Nc−Nf

)
=

a

Λ3Nc−Nf
×B̃fMff ′Bf ′

+
b

Λ3Nc−Nf
×det(M), exactly. (S.26)

The classical superpotential (4) indeed has this form for b = −a.

Note that the powers of Λ here are completely fixed by the R–symmetry, which eliminates

any instanton corrections carrying higher powers of Λ. Consequently, in the absence of tree-

level masses or Yukawa couplings, the semiclassical effective superpotential (4) is exact and

does not suffer any quantum corrections whatsoever.

In other words, the chiral ring of SQCD with Nf = Nc+1 does not suffer from any quantum

corrections.
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Problem 3(a):

Let’s call the mixed RA charge R′. A quick look at the table (S.20) and the list of pure-R

charges below immediately identifies the charge generating the symmetry (8) as

R′ = R +
1

Nf
A. (S.27)

The instanton parameter Λ3Nc−Nf has A = +2Nf and R = −2, hence R′ = 0, which indicates

that the R′ charge is anomaly free.

Alternatively, you may calculate the color anomaly of the R′ charge directly from eq. (8)

for the fermion charges:

anomaly = R′(λ)× 2 Index(λ) + R′(ψ)× 2 Index(ψ) + R′(ψ̃)× 2 Index(ψ̃)

= (+1)× 2Nc −
Nc

Nf
×Nf −

Nc

Nf
×Nf

= +2Nc − Nc − Nc = 0.

(S.28)

Problem 3(b):

fields

QN

SU(Nf )L SU(Nf )R V charge R′ charge #colors

λ 1 1 0 +1 N2
c − 1

ψQ Nf 1 +1 1
Nf

− 1 Nc

ψ̃Q 1 Nf −1 1
Nf

− 1 Nc

ΨM Nf Nf 0 2
Nf

− 1 1

ΨB Nf 1 +Nc
Nc

Nf
− 1 1

Ψ̃B 1 Nf −Nc
Nc

Nf
− 1 1

(S.29)
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Problem 2(c):

Let’s calculate the non-trivial flavor anomalies.

• Three SU(Nf )L generators. By group theory,

tr(T a
L{T

b
L, T

c
L}) = AL × dabc (S.30)

where the coefficient AL counts the number of fundamentalNf multiplets of the SU(Nf )L

minus the number of anti-fundamental Nf multiplets. (In theories with non-trivial tensor

multiplets, they also count with non-trivial coefficients, but fortunately we don’t have

them here.) For the elementary fermions

Aelem
L = AL(λ) + AL(ψQ) + AL(ψ̃Q) = 0 + Nc + 0 = Nc . (S.31)

For the composite fermions

Acomp
L = AL(ΨM ) + AL(ΨB) + AL(Ψ̃B) = Nf − 1 + 0 = Nc . (S.32)

Anomalies match.

• Three SU(Nf )R generators. Again

tr(T a
L{T

b
R, T

c
R}) = AR × dabc where AR = #Nf − #Nf , (S.33)

but now we count multiplets of the SU(Nf )R. For the elementary fermions

Aelem
R = AR(λ) + AR(ψQ) + AR(ψ̃Q) = 0 + 0 + Nc = Nc (S.34)

while for the composite fermions

Acomp
R = AR(ΨM ) + AR(ΨB) + AR(Ψ̃B) = Nf + 0 − 1 = Nc . (S.35)

The anomalies match.
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• Two SU(Nf )L generators and one V charge. By group theory,

tr(T a
LT

b
LB) = δab ×ALLV where ALLV =

∑

fermions

V (ψ)× Index
SU(Nf )L

(ψ)×#ψ (S.36)

where #ψ counts the color and SU(Nf )R multiplicities of the fermionic species ψ. For

the elementary fermions, ALLV (λ) = ALLV (ψ̃Q) = 0, hence

Aelem
LLV = ALLV (ψQ) = (+1)×

1

2
×Nc = +

Nc

2
. (S.37)

For the composite fermions, ALLV (ΨM ) = 0 because M has V = 0 and ALLV (Ψ̃B) = 0

because B̃ is a singlet of SU(Nf )L, thus

Acomp
LLV = ALLV (ΨB) = (+Nc)×

1

2
× 1 = +

Nc

2
. (S.38)

The anomalies match.

• Two SU(Nf )R generators and one V charge. Similarly, for the elementary fermions

Aelem
RRV = 0 + 0 + ARRV (ψ̃Q) = (−1)×

1

2
×Nc = −

Nc

2
(S.39)

while for the composite fermions

Acomp
RRV = 0 + 0 + ARRV (Ψ̃B) (−Nc)×

1

2
× 1 = −

Nc

2
. (S.40)

Anomalies match.

• Two SU(Nf )L generators and one R′ charge. Again, among the elementary fermions,

only the quarks contribute to this anomaly (because the gauginos and the antiquarks are
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SU(Nf )L singlets), thus

Aelem
LLR′ = ALLR′(ψQ) = R′(ψQ)×Index

L
(ψQ)×#ψQ =

(
1

Nf
− 1

)
×
1

2
×Nc = −

N2
c

2Nf
.

(S.41)

On the composite side,

ALLR′(ΨM ) = R′(ΨM )× Index
L

(ΨM )×#ΨM =

(
2

Nf
− 1

)
×

1

2
×Nf =

2−Nf

2
,

ALLR′(ΨB) = R′(ΨB)× Index
L

(ΨB)×#ΨB =

(
Nc

Nf
− 1

)
×

1

2
× 1 = −

1

2Nf
,

ALLR′(Ψ̃B) = 0 because Index
L

(Ψ̃B) = 0,

net Acomp
LLR′ =

2−Nf

2
−

1

2Nf
= −

(Nf − 1)2

2Nf
= −

N2
c

2Nf
,

(S.42)

and the anomalies match.

• Two SU(Nf )R generators and one R′ charge. Similarly to the LLR′ anomaly, on the

elementary side ARRR′(λ) = ARRR′(ψQ) = 0 and

Aelem
RRR′ = ARRR′(ψ̃Q) =

(
1

Nf
− 1

)
×

1

2
×Nc = −

N2
c

2Nf
, (S.43)

while on the composite side

ARRR′(ΨM ) = R′(ΨM )× Index
R

(ΨM )×#ΨM =

(
2

Nf
− 1

)
×

1

2
×Nf =

2−Nf

2
,

ALLR′(ΨB) = 0 because Index
R

(Ψ̃B) = 0,

ARRR′(Ψ̃B) = R′(ΨB)× Index
R

(ΨB)×#ΨB =

(
Nc

Nf
− 1

)
×

1

2
× 1 = −

1

2Nf
,

net Acomp
RRR′ =

2−Nf

2
−

1

2Nf
= −

(Nf − 1)2

2Nf
= −

N2
c

2Nf
,

(S.44)

and the anomalies match.

It remains to calculate and compare the purely abelian anomalies involving the net quark

number V and the R′ charge. By charge conjugation symmetry, the anomalies involving odd
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powers of V and even powers of R′ are automatically zero, so we need to check only the

remaining tr(V V R′), tr(R′R′R′), and tr(R′) anomalies.

• Two V charges and oneR′ charge. On the elementary side, the gauginos do not contribute

to this anomaly while the quarks and the antiquarks contribute

AV V R′(ψQ) = AV V R′(ψ̃Q) = V 2 ×R′ ×# = (±1)2 ×

(
1

Nf
− 1

)
×NcNf = −N2

c ,

(S.45)

thus net Aelem
V V R′ = −2Nc. On the composite side, the mesons do not contribute (because

of V = 0) while the baryons and the antibaryons contribute

AV V R′(ΨB) = AV V R′(Ψ̃B) = V 2 × R′ ×# = (±Nc)
2 ×

(
Nc

Nf
− 1

)
×Nf = −N2

c

so the net composite anomaly Acomp
V V R′ = −2N2

c matches the net elementary anomaly.

• Three R′ charges. This time all fermionic species contribute to this anomaly. On the

elementary side,

AR′R′R′(λ) = R′3(λ)×#λ = (+1)3 × (N2
c − 1) = N2

c − 1,

AR′R′R′(ψQ) = R′3(ψQ)×#ψQ =

(
1

Nf
− 1

)3

×NcNf = −
N4

c

N2
f

,

AR′R′R′(ψ̃Q) = R′3(ψ̃Q)×#ψ̃Q =

(
1

Nf
− 1

)3

×NcNf = −
N4

c

N2
f

,

net Aelem
R′R′R′ = N2

c − 1 −
2N4

c

N2
f

= −N2
f + 6Nf − 12 +

8

Nf
−

2

N2
f

,

(S.46)

while on the composite side

AR′R′R′(ΨM ) = R′3(ΨM )×#ΨM =

(
2

Nf
− 1

)3

×N2
f = −

(Nf − 2)3

Nf
,

AR′R′R′(ΨB) = R′3(ΨB)×#ΨB =

(
Nc

Nf
− 1

)3

×Nf = −
1

N2
f

,

AR′R′R′(Ψ̃B) = R′3(Ψ̃B)×#Ψ̃B =

(
Nc

Nf
− 1

)3

×Nf = −
1

N2
f

,

net Acomp
R′R′R′ = −

(Nf − 2)3

Nf
−

2

N2
f

= −N2
f + 6Nf − 12 +

8

Nf
−

2

N2
f

,

(S.47)
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and the net anomalies match.

• The trace anomaly, a single R′ charge. For the elementary fermions,

AR′(λ) = R′(λ)×#λ = (+1)× (N2
c − 1) = N2

c − 1,

AR′(ψQ) = R′(ψQ)×#ψQ =

(
1

Nf
− 1

)
×NcNf = −N2

c ,

AR′(ψ̃Q) = R(ψ̃Q)×#ψ̃Q =

(
1

Nf
− 1

)
×NcNf = −N2

c ,

net Acomp
R′R′R′ = −N2

c − 1,

(S.48)

while on the composite side

AR′(ΨM ) = R′(ΨM )×#ΨM =

(
2

Nf
− 1

)
×N2

f = −(Nf − 2)Nf ,

AR′(ΨB) = R′(ΨB)×#ΨB =

(
Nc

Nf
− 1

)
×Nf = −1 ,

AR′(Ψ̃B) = R′(Ψ̃B)×#Ψ̃B =

(
Nc

Nf
− 1

)
×Nf = −1 ,

net Acomp
R′R′R′ = −N2

f + 2Nf − 2 = −N2
c − 1,

(S.49)

and the trace anomalies match too.

This completes our check of the ’t Hooft’s anomaly matching conditions.
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