
SQCD

Basics

As a prototypical supersymmetric gauge theory, consider SQCD — the supersymmetrized

QCD — with N colors and 1 flavor. The vector fields Aaµ(x) for a = 1, . . . , (N2 − 1)

are accompanied by the gauginos — LH Weyl fermions λaα and their hermitian conjugates

λ̄aα̇ — and auxiliary fields Da. In the superfield formalism, they are packaged into real

superfields V a(x, θ, θ̄), which form an adjoint multiplet of the SU(N) gauge group. Or in

matrix notations, there is a traceless hermitian matrix of vector superfields

V ij(x, θ, θ̄) =
∑
a

gV a(x, θ, θ̄)×
(
ta
)i
j

(1)

where ta = 1
2λ

a
Gell-Mann are the SU(N) generators in the fundamental representation of the

group.

Each Dirac quark Ψi(x) (together with its conjugate Ψi(x)) is equivalent to 2 LH Weyl

fermions (plus their conjugates): the LH quark and the LH antiquark. Each of these Weyl

fermions comes with a complex scalar squark and an auxiliary field, and in the superfield

formalism, all these component fields are packaged into 2N chiral superfields Ai(y, θ) and

Bi(y, θ), plus their anti-chiral hermitian conjugates Ai(ȳ, θ̄) and B
i
(ȳ, θ̄). The Ai form

the fundamental multiplet N of the SU(N) gauge group while the Bi form the conjugate

multiplet N, so under the ordinary gauge transforms U(x) ∈ SU(N), these superfields

transform as

A′i(y, θ) = U ij(x)Aj(y, θ), B′i(y, θ) = U∗ ji (x)Bj(y, θ). (2)

Let’s assemble the Ai into a column vector of length N while the Bi form a row vector of

the same length; then in matrix notations eqs. (2) become

A′(y, θ) = U(x)× A(y, θ), B′(y, θ) = B(y, θ)× U †(x) = B(y, θ)× U−i(x). (3)

These are the ordinary — i.e., non-supersymmetric — gauge transforms. Under the su-

persymmetric gauge transforms, we generalize these formulae from x-dependent but not
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θ-dependent unitary matrices U(x) to more general matrices U(y, θ) of chiral superfields. To

determine the nature of such matrices, we start by writing the general SU(N) matrix U(x)

as exp(iΛ(x)) for some traceless hermitian x-dependent matrix Λ(x) and hence

U(x) = exp
(
i
∑

a
Λa(x)× ta

)
(4)

where Λa(x) are ordinary real scalar fields. Now let’s promote these real scalar fields Λa(x)

to arbitrary chiral superfields Λa(y, θ). Consequently, we get a general traceless matrix of

chiral superfields

Λ(y, θ) =
∑
a

Λa(y, θ)× ta (5)

and hence

U(y, θ) = exp
(
iΛ(y, θ)

)
. (6)

Note that the lowest components (for θ = 0, y = x) of the chiral superfields Λa are complex

rather than real scalar fields, hence the lowest component of the Λ matrix is traceless but

not hermitian and the lowest component of the U matrix has a unit determinant but it’s not

unitary. Instead it’s a general SL(N,C) matrix!

So here is the bottom line for the supersymmetric gauge transforms of the quark super-

fields Ai(y, θ) and Bi(y, θ): In matrix notations

A′(y, θ) = exp
(
+iΛ(y, θ)

)
× A(y, θ), B′(y, θ) = B(y, θ)× exp

(
−iΛ(y, θ)

)
, (7)

where Λ(y, θ) =
∑

a Λa(y, θ) × ta for the most general chiral superfields Λa(y, θ). Also, the

hermitian conjugates Λ
a
(ȳ, θ̄) of these Λa(y, θ) superfields govern the gauge transforms of

the antichiral quark superfields Ai(ȳ, θ̄) and B
i
(ȳ, θ̄): In matrix notations — where the Ai

form a row vector while the B
i

form a column vector, —

A
′
(ȳ, θ̄) = A(ȳ, θ̄)× exp

(
−iΛ(ȳ, θ̄)

)
, B

′
(ȳ, θ̄) = exp

(
+iΛ(ȳ, θ̄)

)
×B(ȳ, θ̄), (8)

for Λ(ȳ, θ̄) =
∑

a Λ
a
(ȳ, θ̄)× ta.
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Next, consider the gauge-invariant kinetic terms in the Lagrangian for the quark super-

fields, By analogy with SQED, we write these terms as

Lkin =

∫
d4θ
(
A× exp(+2V)× A + B × exp(−2V)×B

)
(9)

where

V =
∑
a

gV a(x, θ, θ̄)× ta (10)

combines the vector superfields V a of SQCD into a hermitian-matrix-valued superfield. To

keep both terms of (9) invariant under the supersymmetric gauge transforms (7) and (8) of

the quark superfields, the vector superfields should transform such that

exp(+2V ′) = exp(+iΛ)× exp(+2V)× exp(−iΛ),

exp(−2V ′) = exp(+iΛ)× exp(−2V)× exp(−iΛ);
(11)

note that these two matrix conditions are equivalent to each other rather than independent.

Indeed, if the vector field transforms as in eq. (11) while the quark superfields transform as

in eqs. (7) and (8), then

A
′ × exp(+2V”)× A = A exp(−iΛ)× exp(+iΛ) exp(+2V) exp(−iΛ)× exp(iΛ)A

= A× exp(+2V)× A,

B′ × exp(−2V ′)×B′ = B′ exp(−iΛ)× exp(+iΛ) exp(−2V) exp(−iΛ)× exp(iΛ)B

= B × exp(−2V)×B.

(12)

In terms of the vector superfield V itself rather than its exponential, the non-abelian gauge

transform (11) amounts to

V ′ = V + i
2

(
Λ− Λ) + 1

4

[
Λ,Λ

]
+ i

2

[
Λ + Λ,V

]
+ multiple commutators.

(13)

Despite the non-abelian commutator terms in this formula, the leading i
2(Λ− Λ) term here

allows to bring any V superfield to the Wess–Zumino gauge:

V(x, θ, θ̄) = (θασµαα̇θ̄
α̇)Aµ(x) + θ̄2θαλα(x) + θ2θ̄α̇λ̄

α̇ + 1
2θ

2θ̄2D, (14)

where Aµ, λα, λ̄α̇, and D are matrix-valued component fields.
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Proof: Let’s start by eliminating the lowest component of the vector superfield

C(x) = V|θ=θ̄=0 (15)

by letting Λ1(x) = −iC(x), Λ1(x) = +iC without any higher components. Consequently,

exp(2V ′)|θ=θ̄=0 = e−C × e+2C × e−C = 1 =⇒ C ′ = 0. (16)

Note that this gauge transform changes all components of the V superfield, but that’s OK as long

as it eliminates the lowest component. Thus, at the end of the first stage we have

V (x, θθ̄) = θαχα(x) + θ̄α̇χ̄
α̇(x) + · · ·

where · · · stand for terms with higher powers of θ or θ̄. So let the second-stage gauge transform be

parametrized by

Λ2(y, θ) = −2iθαχα(y), Λ2(ȳ, θ̄) = +2iθ̄α̇χ̄
α̇(y), (17)

which eliminates all the terms of the first-order in θ or θ̄ without re-introducing the C term

exp(2V ′′) = exp(iΛ)× exp(2V ′)× exp(−iΛ) = 1 + terms at least quadratic in(θ, θ̄), (18)

hence

V ′′(x, θ, θ̄) = θ2f(x) + θ̄2f∗(x) + (θσµθ̄)Aµ(x) + higher-order terms. (19)

Again, the f , f∗, and Aµ can be different than the similar components of the V ′, but that’s OK as

long as all the zero-order and first-order components are eliminated.

Finally, we perform the third-stage gauge transform using Λ3 = −2iθ2f(x), Λ3 = +2iθ̄2f∗(x),

which eliminates the f and f∗ of the vector superfield V ′′′ and brings it to the Wess-Zumino

gauge (14). Quod erat demonstrandum.

Next, consider the tension superfields. For an abelian vector superfield V , the tension

superfields are simply

chiral Wα = −1
4D

2
DαV and antichiral W α̇ = −1

4D
2Dα̇V. (20)

Their non-abelian analogies for the matrix-valued vector superfield V are

chiral Wα = −1
8D

2(
e−2VDαe

+2V) and antichiral W α̇ = +1
8D

2
(
e+2VDα̇e

−2V). (21)

However, unlike the abelian tensions (20), their non-abelian counterparts (21) are not gauge
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invariant. Instead, they gauge-transform as adjoint multiplets of chiral / antichiral super-

fields,

W ′α(y, θ) = exp
(
+iΛ(y, θ)

)
×Wα(y, θ)× exp

(
−iΛ(y, θ)

)
,

W ′α̇(ȳ, θ̄) = exp
(
+iΛ(ȳ, θ̄)

)
×W α̇(ȳ, θ̄)× exp

(
−iΛ(ȳ, θ̄)

)
.

(22)

Indeed, consider

Γα
def
= e−2VDαe

+2V . (23)

Under gauge transforms (11) of the vector superfield V , this Γα transforms to

Γ′α = e−2V ′
Dαe

+2V = e+iΛe−2Ve−iΛ ×Dα

(
e+iΛe+2Ve−iΛ

)
= e+iΛe−2V ×

(
e−iΛ ×Dαe

+iΛ
)
× e+2Ve−iΛ

+ e+iΛ ×
(
e−2VDαe

+2V)× e−iΛ + e+iΛDαe
−iΛ

= 0 〈〈 because DαΛ = 0 〉〉

+ e+iΛ × Γα × e−iΛ + e+iΛDαe
−iΛ.

(24)

Next, since Λ(y, θ) is chiral, Dβ̇Λ = 0, we have

D
2(
e+iΛ × Γα × e−iΛ

)
= e+iΛ ×

(
D

2
Γα
)
× e−iΛ, (25)

while

D
2(
e+iΛDαe

−iΛ) = e+iΛ ×
[
D

2
, Dα

]
e−iΛ

= e+iΛ ×
(
−4i∂µσ

µ

αβ̇
D
β̇)
e−iΛ

= 0.

(26)

Thus, taking D
2

of both sides of eq. (24), we get

D
2
Γ′α = e+iΛ ×

(
D

2
Γα
)
× e−iΛ (27)

and hence

W ′α = e+iΛ ×Wα × e−iΛ. (28)
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Likewise, let

Γα̇
def
= e+2VDα̇e

−2V . (29)

Then under gauge transform (11) of the vector superfield this Γα̇ transforms to

Γ
′
α̇ = 0 + e+iΛ × Γα̇ × e−iΛ + e+iΛDα̇e

−iΛ (30)

and hence

D2Γ
′
α̇ = 0 + e+iΛ ×

(
D2Γα̇

)
× e−iΛ + 0, (31)

thus

W ′α̇ = e+iΛ ×W α̇ × e−iΛ. (32)

Quod erat demonstrandum.

However, while the non-abelian tension superfields themselves are not gauge invariant,

we may form gauge-invariant quadratic combinations of these superfields; in matrix form,

these invariant combinations are the traces

tr
(
WαWα

)
and tr

(
W α̇W

α̇)
. (33)

The gauge-invariant kinetic terms for the gauge fields and their superpartners — indeed, the

entire super–Yang–Mills (SYM) Lagrangian — obtains from the d2θ / d2θ̄ integrals of these

invariant traces as

LSYM =
iτ

8π

∫
d2θ tr

(
WαWα

)
− iτ∗

8π

∫
d2θ̄ tr

(
W α̇W

α̇)
(34)

where

τ
def
=

4πi

g2
+

Θ

2π
(35)

is the complex gauge coupling of the theory combining the ordinary gauge coupling g and

the instanton angle Θ. As we shall learn later in class, this combination is particularly
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convenient for the electric-magnetic dualities of gauge theories. In other contexts, a more

convenient combination is

f = −2πi× τ =
8π2

g2
− iΘ, (36)

but either way, the (inverse) gauge coupling and the instanton angle are combined in a single

complex parameter τ or f .

To work out the SYM Lagrangian (34) in terms of the component fields, let’s put the vec-

tor superfield V in the Wess–Zumino gauge. (Because otherwise, the unphysical components

of the V would not completely decouple from the non-abelian terms in the Lagrangian.) In

this gauge

Wα(y, θ) = λα(y) + θαD(y) + i
2(σµσ̄ν) βα θβFµν(y) − iθ2σµ

αβ̇
Dµλ̄

β̇,

W α̇
(ȳ, θ̄) = λ̄α̇(ȳ) + θ̄α̇D(ȳ) − i

2(σ̄µσν)α̇
β̇
θ̄β̇Fµν(y) + iθ̄2σ̄µ,α̇βDµλβ(ȳ),

(37)

for the non-abelian

Fµν = ∂µAν − ∂νAµ + i[Aµ,Aν ],

Dµλβ = ∂µλβ + i[Aµ, λβ],

Dµλ̄
β̇ = ∂µλ̄

β̇ + i[Aµ, λ̄β̇].

(38)

Consequently,

LSYM =
1

g2
tr

(
−1

2FµνF
µν + iλ̄α̇σ̄

µ,α̇β
↔
Dµ λβ + D2

)
+

Θ

16π2
tr
(
εκλµνFκλFµν

)
+

iΘ

16π2
∂µ tr

(
λ̄α̇σ̄

µ,α̇βλβ
)
.

(39)

Finally, let me write down the complete Lagrangian of SQCD with N colors and one

flavor:

LSQCD =

∫
d4θ
(
A exp(+2V)A + B exp(−2V)B

)
+

∫
d2θ
( iτ

8π
tr
(
WαWα

)
+ mBA

)
+

∫
d2θ̄
(−iτ∗

8π
tr
(
W α̇W

α̇)
+ m∗AB

)
(40)

where m is the quark mass.
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Higgs Regime

For m = 0, the classical scalar potential of SQCD has flat directions, and the for non-zero

squark VEVs 〈A〉 and 〈B〉 along these flat directions lead to partial Higgsing of the SU(N)

gauge symmetry down to SU(N − 1). In a later class, we shall learn that these classical

flat directions remain flat to all orders of the perturbation theory, but the non-perturbative

effects spoil the flatness. But for the moment, let us stick to the classical scalar potential

for the squark fields Ai and Bi.
?

In the Wess–Zumino gauge,

Vscalar =
1

2g2

∑
a

(
Da
)2

=
g2

2

∑
a

(
A†taA − BtaB†

)2
. (41)

This non-negative potential vanishes when

A†taA = BtaB† ∀Gell-Mann matrices 2ta, (42)

which happens if and only if A and B† are the same column vectors up to an overall phase,

B∗i = Ai × eiphase, same phase for all i = 1, . . . , N. (43)

Thus, the classical vacuum space of SQCD is parametrized by scalar VEVs
〈
Ai
〉

and 〈Bi〉
obeying the relations (43). Naively, such VEVs have 2N + 1 independent real parameters,

but that’s before we take the gauge redundancy into account.

Note that the Wess–Zumino gauge condition does not fix the ordinary gauge transforms

but only their superpartners, so the scalar VEVs related by the ordinary gauge symmetries

are physically equivalent to each other. In particular, any set of
〈
Ai
〉

is gauge-equivalent to

the

〈A〉 =


0
...

0

a

 (44)

? By abuse of notations, we use the same letters A and B for the chiral superfields and their scalar
components.
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for some complex a. In this gauge, eqs. (43) call for

〈
B†
〉

=


0
...

0

b∗

 =⇒ 〈B〉 =
(

0 · · · 0 b
)

(45)

where |b| = |a|. These VEVs Higgs the SU(N) gauge symmetry down to its SU(N − 1)

subgroup acting on the first N − 1 colors. Furthermore, a and b have opposite charges WRT

U(1) subgroup of SU(N) that commutes with the unbroken SU(N − 1), so we may use this

U(1) symmetry to make a = b = renamed = Φ, thus

〈A〉 = Φ×


0
...

0

1

 , 〈B〉 = Φ×
(

0 · · · 0 1
)
, (46)

for an arbitrary complex modulus Φ. Note that the vacuum space of the one-flavor SQCD

does not have any other moduli besides Φ, so the physical moduli space has complex dimen-

sion 1 or real dimension 2.

Now let’s count the degrees of freedom of the Higgsed down SQCD. The original SU(N)

gauge symmetry of the theory is Higgsed down to SU(N −1), so the theory has (N −1)2−1

massless vector supermultiplets and 2N − 1 massive vector supermultiplets. The theory also

starts with 2N scalar supermultiplets Ai and Bi, but the SUSY Higgs mechanism eats a whole

scalar supermultiplet for each vector supermultiplet that becomes massive, so 2N − 1 out

of 2N scalar supermultiplets are eaten and there is only one un-eaten scalar supermultiplet,

namely the modulus b and its superpartner.

Each massive vector supermultiplet comprises a massive vector, a Dirac fermion (or

equivalently two Weyl fermions), and a real scalar. In the component field formulation, the

vector masses arise via the ordinary Higgs mechanism, the fermion masses stem from the

Yukawa couplings Φ∗λψ + H.c. to the squark VEVs, and the real scalar’s masses stem from

the non-flat directions of the scalar potential. You should work out all these masses by

yourselves as a part of your homework set#2. And at the end of this exercise, you should
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see that thanks to the unbroken SUSY, all members of the same vector supermultiplet V a

get the same mass — despite seemingly different origins of these masses.

But in these notes, I am going to focus on the manifestly supersymmetric picture of

the Higgs mechanism and masses of vector multiplets. So instead of using a SUSY-breaking

Wess–Zumino gauge, let’s use a supersymmetric unitary gauge in which

Ai(y, θ) = Φ(y, θ)×


0
...

0

1

 and Bi(y, θ) = Φ(y, θ)×
(

0 · · · 0 1
)

(47)

as chiral superfields, for any (y, θ). Note that the supersymmetrized gauge transforms of

chiral superfields

Ai(y, θ) → U ij(y, θ)× Aj(y, θ), Bi(y, θ) → Bj(y, θ)×
(
U−1(y, θ)

)j
i

(48)

are parametrized by the SL(N,C) — but generally non-unitary — matrices

U ij(y, θ) = exp
(
i
∑

a
Λa(y, θ)ta

)i
j
. (49)

It is this non-unitarity which allows bringing both any non-zero column vector Ai and any

non-zero row vector Bi to the form (47) at the same time. Indeed, this can be done by the

following 3-stage gauge transform:

1. As a first stage, we bring the column vector of the Ai(y, θ) chiral fields to the desired

form (47),

A′(y, θ) = U1(y, θ)A(y, θ) =


0
...

0

A′N (y, θ)

 ; (50)

this is always possible for any initial array of Ai(y, θ).
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2. At the second stage, we would like to turn the row-vector B — or rather B′ = BU−1
1

in the N th direction without disturbing the A′ column vector, so we are limited to the

U2(y, θ) matrices such that

A′′ = U2A
′ = A′. (51)

In explicit matrix terms, this means

U2 =


∗ · · · ∗ 0
...

. . .
... 0

∗ · · · ∗ 0

∗ · · · ∗ 1

 . (52)

Note however that for an SL(N,C) but non-unitary matrix U2, having U iN = 0 for

i < N does not require UNi = 0 for i < N . Also, the U−1
2 matrices acting on the row

vector B′ also have form (52) — with restricted right column but unrestricted bottom

row — so any row vector B′ = B×U−1
1 can be rotated till it points in the N th direction

without disturbing the column vector A′, thus

B′′(y, θ) = B′(y, θ)× U−1
2 (y, θ) =

(
0 · · · 0 B′′N (y, θ)

)
. (53)

3. At this point, both the column vector A′′ and the row vector B′′ point in the N th

direction for all (y, θ), and both of these conditions are preserved by the U3 matrices

belonging to the SL(N−1,C)×Ĉ?
subgroup of the SL(N,C). The U3 ∈ SL(N−1,C)

have no further effect on the A′′ and B′′ superfields, but U3 ∈ Ĉ change the values of

the A′′N and B′′N :

A′′′N (y, θ) = A′′N (y, θ)× C(y, θ), B′′′N (y, θ) = B′′N (y, θ)× C−1(y, θ). (54)

Consequently, for any non-zero values of the A′′N (y, θ) and B′′N (y, θ), we may always

? Here Ĉ denotes the complexification of the U(1), the group of multiplication by non-zero complex
numbers.
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make them equal to each other,

A′′′N (y, θ) ≡ B′′′N (y, θ). (55)

Altogether, this 3-stage supersymmetric gauge transform can bring any non-zero mul-

tiplets Ai and Bi of chiral superfield to the form

Ai(y, θ) = Φ(y, θ)×


0
...

0

1

 ,
Bi(y, θ) = Φ(y, θ)×

(
0 · · · 0 1

)
,

for the same Φ(y, θ).
(47)

The bottom line here is that in the Higgs regime of SQCD we may impose the super-

symmetric unitary gauge where the quark superfields Ai(y, θ) and Bi(y, θ) are restricted to

have form (47), or equivalently, are required to have

Ai(y, θ) ≡ 0 for i < N,

Bi(y, θ) ≡ 0 for i < N,

AN (y, θ) ≡ BN (y, θ).

(56)

These conditions eliminate 2N − 1 out of 2N chiral superfields of the theory and leave us

with the only chiral superfield Φ(y, θ). There is no scalar potential for this Φ, so it acts

as the modulus superfield of the classical SQCD vacua. However, similar to SQED, Φ is

a double-valued modulus — Φ(y, θ) is gauge-equivalent to −Φ(y, θ) — so it is often more

convenient to use the single-valued modulus

M = Φ2. (57)

Or in gauge-invariant terms,

M = AiBi . (58)

The unitary gauge conditions (56) do not fix all the supersymmetrized gauge symmetries

of the theory. Instead, they limit them to the U(y, θ) ∈ SL(N−1,C) subgroup of SL(N,C),
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which corresponds to the ordinary gauge symmetry group restricted to the SU(N − 1)

subgroup of SU(N). Physically, this means that this SU(N − 1) subgroup remains un-

Higgsed and the corresponding vector superfields V a remain massless, while the other 2N−1

vector superfields of the Higgsed-down symmetries become massive. In the the process, these

massive vectors eat 2N − 1 chiral superfields, but in the SUSY unitary gauge those eaten

chiral superfields are simply eliminated by the gauge conditions while the extra components

of the massive vector superfields are already there but now we can no longer eliminate them

by gauge transforms. Furthermore, the Lagrangian in the unitary gauge contains gauge-

symmetry-breaking supersymmetric mass terms

Lnet ⊃ LMV =
∑
a,b

(
M2
V

)a,b × ∫ d4θ V aV b (59)

for the vector superfields outside the unbroken SU(N − 1) subgroup of the SU(N).

To see how this works, consider the kinetic Lagrangian terms for the quark superfields:

Lkin =

∫
d4θ
(
A exp(+2V)A + B exp(−2V)B

)
in the unitary gauge −→

∫
d4θΦΦ×

(
e+2V + e−2V

)matrix element

N,N

=

∫
d4θΦΦ + |〈Φ〉|2 ×

∫
d4θ
(

4V2
)matrix element

N,N

+ interaction terms

(60)

where the second term amounts to

LMV = |〈Φ〉|2 ×
∫
d4θ
(

4V2
)matrix element

N,N

= |〈Φ〉|2 ×
∫
d4θ

(
4
(
g
∑

a
V ata

)2
)matrix element

N,N

= g2 |〈Φ〉|2 ×
∑
a,b

∫
d4θ V aV b ×

(
2{ta, tb}

)matrix element

N,N
.

(61)

In other words, it’s the sum of manifestly supersymmetric mass terms for the canonically
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normalized vector superfields V a(x, θ, θ̄),

LMV =
∑
a,b

(
M2
V

)a,b × ∫ d4θ V aV b (59)

for the mass2 matrix

(
M2
V

)a,b
= g2 |〈Φ〉|2 ×

(
2{ta, tb}

)matrix element

N,N
. (62)

For N = 2, 2ta are Pauli matrices, hence 2{ta, tb} = δa,b × 22×2 and therefore

(
M2
V

)a,b
= g2 |〈Φ〉|2 × δa,b (63)

— all 3 vector superfields of the SU(2) getting the same mass MV = g| 〈Φ〉 |. For N > 2,

the 2ta are Gell-Mann matrices which do not anticommute with each other, but nevertheless

have

(
2{ta, tb}

)matrix element

N,N
= δa,b ×


0 for a ≤ (N − 1)2 − 1,

1 for (N − 1)2 ≤ a ≤ N2 − 2,
2(N−1)
N for a = N2 − 1.

(64)

Consequently, the vector mass2 matrix (62) is diagonal but has 3 different eigenvalues, which

correspond to the SU(N − 1) quantum numbers of the vector superfields. Indeed, the V a

form an adjoint multiplet of the original SU(N) gauge group, but under the un-broken

SU(N − 1) subgroup they break into several irreducible multiplets, namely

adjoint + fundamental + antifundamental + singlet. (65)

• The adjoint multiplet comprises ta with a ≤ (N − 1)2 − 1, so all the corresponding

vector superfields are massless.

• The fundamental and antifundamental (N − 1) + (N− 1) multiplets — which are

antiparticles of each other — are linear combinations of ta with (N−1)2 ≤ a ≤ N2−2.

Consequently, all the corresponding superfields V a have the same mass2 = g2 |〈Φ〉|2.

• Finally, the singlet is ta for a = N2 − 1, so the corresponding V a has a different

mass2 = g2 |〈Φ〉|2 × 2(N−1)
N .
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SQCD with Several Flavors

Thus far we have focused on SQCD with a single quark flavor, but generalization to

several flavors is rather straightforward. Using matrix notations for the colors but not the

flavors, we have 2NfNc chiral superfields in Nf column vectors Af and Nf row vectors Bf ,

and a traceless hermitian matrix

V = g
∑
a

V a(x, θ, θ̄)× ta (66)

of vector superfields. The Lagrangian is

LSQCD =

∫
d4θ

∑
f

(
Af exp(+2V)Af + Bf exp(−2V)Bf

)

+

∫
d2θ

 iτ

8π
tr
(
WαWα

)
+
∑
f

mfBfAf

 + H. c.,

(67)

and the supersymmetrized gauge transforms act similarly to the one-flavor case:

A′f = exp(+iΛ)× Af ,

B′f = Bf × exp(−iΛ),

A
′
f = Af × exp(−iΛ),

B
′
f = exp(+iΛ)×Bf ,

exp(+2V ′) = exp(+iΛ)× exp(+2V)× exp(−iΛ),

(68)

all for

Λ =
∑
a

Λa(y, θ)× ta, Λ =
∑
a

Λ(ȳ, θ̄)× ta. (69)

Later in class we shall study in great detail the vacuum states of the SQCD theories with

different flavor to color ratios Nf/Nc, and also different numbers of massive vs. massless

flavors. Thanks to supersymmetry, we would be able to derive a bunch of exact — i.e.,

non-perturbative — properties of those vacuum states. But in these notes we shall focus on

the classical vacua of the theory and their moduli spaces. In particular, we assume Nf < Nc

massless quark flavors, and ignore the massive flavors altogether since classically they cannon

have non-zero VEVs.
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Let’s start with just 2 massless flavors and Nc = N ≥ 3 colors. At a generic point in

the moduli space, the squark VEVs Higgs the SU(N) gauge theory down to SU(N − 2) (or

down to nothing for N = 3). To see how this works, let’s turn on squark VEVs one flavor

at a time. Or equivalently, let’s impose the supersymmetrized unitary gauge on one flavor

at a time. Thus, for any A1 6= 0 and any B1 6= 0 we may gauge transform these column and

row vectors till they both point in the N th direction, specifically

A1(y, θ) =



0
...

0

0

Φ1(y, θ)


, B1(y, θ) =

(
0 · · · 0 0 Φ1(y, θ)

)
(70)

for some modulus superfield Φ1(y, θ). The gauge transform which brings the first flavor fields

to this form uses up the SU(N)/SU(N − 1) SUSY gauge symmetries, but the SU(N − 1)

subgroup remains un-fixed.

Now consider the second flavor quark fields A2 and B2. From the SU(N − 1) point of

view, the A2 quarks’ colors comprise a fundamental (N − 1) multiplet plus a singlet A2,N ,

or in matrix notations a column vector Ã2 of length N − 1, plus a separate AN2 superfield.

Likewise, the B2 antiquark fields form a row vector B̃2 of length N − 1 plus a separate B2,N

superfield. Consequently, we may use the (supersymmetrized) SU(N − 1) gauge transform

to make the Ã2 and B̃2 vectors to point in the (N − 1)st direction. In terms of the length-N

vectors A2 and B2, this means

A2(y, θ) =



0
...

0

Φ2(y, θ)

AN2 (y, θ)


, B2(y, θ) =

(
0 · · · 0 Φ2(y, θ) B2,N (y, θ)

)
. (71)

Altogether, the SUSY unitary gauge reduces 4Nc chiral superfields down to just 4 moduli

superfields, namely Φ1, Φ2, AN2 , and B2,N . The remaining 4Nc − 4 chiral superfields are

fixed by the gauge conditions, or in gauge0-independent terms, they become eaten by the
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Higgs mechanism which reduces the SU(Nc) gauge group down to its SU(Nc− 2) subgroup.

In the process, (
N2
c − 1

)
−
(

(Nc − 2)2 − 1
)

= 4Nc − 4 (72)

vector supermultiplets become massive, and that’s why they eat up 4Nc−4 chiral superfields.

Note that while the specific set of 4 moduli superfields Φ1, Φ2, AN2 , and B2,N is based on

sequential flavor-by-flavor imposition of the unitary gauge, the net dimension of the moduli

space is gauge invariant. So there is a better set of 4 moduli space coordinates in terms of

gauge-invariant bilinears of quark and antiquark fields,

Mf,f ′ = Bf,iA
i
f ′ , f, f ′ = 1, 2. (73)

Besides gauge invariance, these coordinates are useful throughout the entire moduli space,

covering not only the general points where the SU(Nc) gauge group is Higgsed all the way

down to a SU(Nc − 2) subgroup but also at special locations where a larger SU(Nc −
1) subgroup survives the Higgsing. Furthermore, the 2 × 2 matrix M made from the 4

moduli (73) provides an easy way to find the un-Higgsed gauge group: If det(M) 6= 0 then

only an SU(Nc − 2) subgroup remains un-Higgsed, but if det(M) = 0 (but M 6= 0) then the

un-Higgsed subgroup is an SU(Nc−1). Indeed, if det(M) = 0 then a suitable SU(2)×SU(2)

flavor symmetry can bring it to a form

M =

(
M1,1 0

0 0

)
, (74)

which corresponds to A2 = 0 and B2 = 0, while A1 6= 0 and B1 6= 0 Higgs the SU(Nc)

down to SU(Nc − 1). Conversely, if the un-Higgsed subgroup is an SU(Nc − 1) then some

linear combination of A1 and A2 happens to vanish, and likewise for the B1 and B2, hence

det(M) = 0.

Now let’s generalize the above analysis of the Higgs mechanism and of the moduli spaces

to SQCD theories with Nf > 2 massless flavors. The N2
f gauge invariant quark-antiquark
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bilinears

Mf,f ′ = Bf,iA
i
f ′ , f, f ′ = 1, . . . , Nf (75)

are independent from each other for Nf ≤ Nc, and for Nf ≤ Nc − 1 these are all the inde-

pendent SL(Nc,C invariant combinations one can make from the 2NfNc chiral superfields

Aif and Bf,i. Also, we shall see momentarily that any combination of the N2
f VEVs

〈
Mf,f ′

〉
(or rather, VEVs of the bilinears’ scalar components) are allowed along the flat directions of

the classical scalar potential. Consequently, the Mf,f ′ are the moduli superfields of SQCD

with Nf < Nc.

Now consider the Higgs mechanism at generic points of the moduli space. In general

each flavor with non-zero squark VEV Higgses down once color of the gauge theory, so a

generic set of squark VEVs for Nf < Nc colors should Higgs the SU(Nc) gauge theory down

to its SU(Nc −Nf ) subgroup (or down to nothing for Nf = Nc − 1). In the process

NV =
(
N2
c − 1

)
−
(
(Nc −Nf )2 − 1

)
= 2NcNf − N2

f (76)

vector superfields V a become massive, while the same number of chiral superfields are eaten

by the Higgs mechanism. Since the theory has only 2NcNf chiral superfields to begin with,

only N2
f chiral superfields remain un-eaten. Thus, the only un-eaten combinations of the

chiral quark and antiquark superfields are the moduli superfields (75).

Furthermore, the Nf × Nf matrix M — or rather its VEV 〈M〉 — provides a simple

indicator of the un-Higgsed gauge group at any point of the moduli space: Let

R = matrix rank(〈M〉), (77)

i.e. the biggest size of a square sub-matrix of 〈M〉 with a non-zero determinant, then the

un-Higgsed subgroup of the SU(Nc) is a SU(Nc − R). In particular, at general points of

the moduli space det(〈M〉) 6= 0, hence rank R = Nf and the un-Higgsed subgroup is a

SU(Nc −Nf ). But at special point of the moduli space R < Nf , hence a larger un-Higgsed

subgroup.
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To see how all this works, let’s go to the Wess–Zumino gauge and consider the flat

directions of the scalar potential for the squarks:

Vscalar =
g2

2

∑
a

(
Da
)2

(78)

for Da =
∑
f

(
A†f t

aAf − Bf t
aB†f

)
. (79)

Instead of explicit flavors, let’s use Nf ×Nc matrix notations for the squark fields, or rather

Nc × Nf matrices A and B† and Nf × Nc matrices B and A†. In these notations, eq. (79)

becomes

Da = tr
(
A× A† × ta

)
− tr

(
B† ×B × ta

)
= tr

(
(AA† −B†B)× ta

)
. (80)

Along a flat direction of the scalar potential (78), all such Da must vanish, which requires

(AA† −B†B) = number× 1Nc×Nc
. (81)

Further more, the matrices AA† and B†B are hermitian non-negative matrices with at

most Nf < Nc non-zero eigenvalues, so they cannot have non-zero difference cannot be

proportional to a unit matrix. Instead, they must be simply equal to each other,

A× A† = B† ×B. (82)

Furthermore, this hermitian matrix can always be diagonalized by an ordinary gauge sym-

metry,

A → U × A, B → B × U †, U ∈ SU(Nc),(
AA† = B†B

)
→ U×

(
AA† = B†B

)
×U † = diag.matrix

(
0, . . . , 0;E2

1 , . . . , E
2
Nf

)
(83)

for some real eigenvalues E1, . . . , ENf
.
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Next, a useful theorem: Any complex matrix M can be decomposed into a product of

two unitary matrices and a real diagonal matrix, M = U1 ×D × U2. Even the rectangular

complex matrices like A and B can be decomposed as

A = UA ×DA ×WA , B = WB ×DB × UB , (84)

where UA and UB are Nc×Nc unitary matrices, WA and WB are Nf ×Nf unitary matrices,

while DA and DB are rectangular matrices with a single non-zero diagonal. In block form,

DA =


zero block

(Nc −Nf )×Nf

real diagonal

block Nf ×Nf

 , DB =

(
zero block

Nf × (Nc −Nf )

∣∣∣∣ real diagonal

block Nf ×Nf

)
. (85)

Consequently,

A× A† = UA × diag.matrix
(

0, . . . , 0;D2
A,1, . . . , D

2
A,Nf

)
× U †A, (86)

B† ×B = U †B × diag.matrix
(

0, . . . , 0;D2
B,1, . . . , D

2
B,Nf

)
× UB , (87)

So eqs. (83) for the squark VEVs translate to

D2
A,f = D2

B,f = E2
f for f = 1, . . . , Nf (88)

while

UA = U †, UB = U. (89)

Therefore, the moduli matrix M = B × A becomes

M = W †B × diag.matrix
(
E2

1 , . . . , E
2
Nf

)
×WA . (90)

From this formula it immediately follows that

R = rank(M) = #non-zero eigenvalues E2
f (91)

of matrices AA† or B†B, and that’s why the Higgs mechanism due to VEVs 〈A〉 and 〈B〉
breaks the SU(Nc) gauge symmetry down to SU(Nc −R).
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Next, let’s show that any complex Nf ×Nf matrixM can be realized by suitable squark

VEVs A and B along the flat directions (83) of the scalar potential. Indeed, any matrix

M can be decomposed into a product (90) of two unitary matrices W †B and WA and a

diagonal matrix with real non-negative eigenvalues E2
1 , . . . , E

2
Nf

. Given such eigenvalues,

we construct the ‘diagonal’ rectangular matrices DA and DB as in eq. (85) with diagonal

elements DA
f = DB

f = Ef . And then we construct the A and B matrices as

A = U ×DA ×WA , B = W †B ×DB × U † (92)

where WA and W †B are Nf ×Nf unitary matrices from the decomposition of theM matrix,

while U is an arbitrary SU(Nc) matrix. As we saw a few lines above, any such values of the

squark fields Aif and Bf,i obey the zero-potential condition (82) and also B×A =M. Quod

erat demonstrandum.

Finally, let’s calculate the classical Kähler function K(M,M) of the moduli space. To

do that, we simply start with the free classical Kähler function for the squark fields,

K = tr
(
A† × A

)
+ tr

(
B ×B†

)
, (93)

and re-express it in terms of the moduli scalars comprising theM matrix and its conjugate

M†. In light of eqs. (92),

tr
(
A† × A

)
=

Nf∑
f=1

(
DA
f

)2
,

tr
(
B ×B†

)
=

Nf∑
f=1

(
DB
f

)2
,

(94)

and hence

K = 2

Nf∑
f=1

E2
f . (95)

At the same time, the hermitian matrix

M×M† = W †B × diag.matrix
(
E4

1 , . . . , E
4
Nf

)
×WB (96)
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has non-negative eigenvalues E4
f , so we may take a square root of this matrix

√
M×M† = W †B × diag.matrix

(
E2

1 , . . . , E
2
Nf

)
×WB . (97)

This square root has eigenvalues E2
f , so taking its trace yields

tr
(√
M×M†

)
=

Nf∑
f=1

E2
f . (98)

Comparing this formula to eq. (95), we immediately see that

K
(
M,M

)
= 2 tr

(√
M×M

)
. (99)

The Riemannian metric for the moduli space in theMf,f ′ andMf,f ′ follows from this Kähler

function by taking its second derivatives WRT toMf,f ′ andMf ′′,f ′′′ , but in the interests of

brevity let me skip this piece of calculus.

Let me conclude these notes by emphasizing that the analysis presented here was purely

classical and is subject to the quantum corrections. In particular, the Kähler function (99)

for the moduli space is subject to the perturbative corrections at all loop orders, as well

as non-perturbative corrections. But my analysis of the Higgs mechanism and the chiral

superfields it eats up, of the scalar potential’s flat directions, and of moduli space and its

complex structure — all that is valid to all orders of the perturbation theory. Only the non-

perturbative effects related to instantons and / or gaugino condensation spoil the flatness of

the scalar potential along the classical moduli space. We shall explore such effects in some

detail later in this class.
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