
TESTING SEIBERG DUALITY

Seiberg duality is the IR duality between two SQCD-like theories A and B with similar

numbers of flavors Nf (A) = Nf (B) but different numbers of colors, Nc(A) 6= Nc(B). Instead,

Nc(A) +Nc(B) = Nf . In these notes, I shall use short-hand notations

Na
def
= Nc(A), Nb

def
= Nc(B), Nf

def
= Nf (A) = Nf (B). (1)

Specifically, the A theory is a pure SQCD, while the B theory also has N2
f gauge-singlet

chiral superfields with Yukawa couplings to the B-quarks,

WB = λ
∑

c,f,f ′

Φf ′f q̃f ′,cq
c
f . (2)

In these notes I take both A and B theories being in the conformal window of SQCD,

1
3Nf < Na, Nb < 2

3Nf , (3)

so the deep-IR limits of both theories are strongly (or moderately-strongly) coupled su-

perconformal theories. Our knowledge of such IR-strong theories is limited, so we cannot

rigorously prove the complete similarity of the deep-IR regimes of the A and B theories.

Instead, I am going to verify that every IR feature of each theory we can find out indeed

agrees between the A and B theories. And that’s how we are going to test the Seiberg duality

in these notes.

In particular, we are going to verify that:

1. Both theories have the same unbroken flavor symmetry

GF = SU(Nf )L × SU(Nf )D × U(1)B × U(1)R (4)

where U(1)B is the vector-like baryon number symmetry while U(1)R is the anomaly-

free combination of the pure-R symmetry and the axial U(1).
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2. Since the flavor symmetry (4) is chiral, we should check the ’t Hooft’s anomaly match-

ing conditions for the two theories. Or at least make sure that these conditions agree

with the same set of massless composite fermions, whoever they might be.

3. The two theories have similar chiral rings. In particular, they have similar generators

with similar flavor quantum numbers and similar scaling dimensions ∆.

4. The two theories have similar moduli spaces.

Note that SQCD may have non-zero VEVs of meson or baryon scalars. Such VEVs

would spontaneously break the conformal symmetry of the IR theory, but they would

not break the supersymmetry. Instead, the IR theory would have supersymmetric

vacua, usually in continuous families parametrized by some moduli.

To test the Seiberg duality, we should verify the A and B theory have similar moduli

spaces.

5. The tree level superpotentials of the two theories may be deformed away from the

conformal point by adding quark masses or O’Raifeartaigh terms for the gauge singlets.

We should check that there is a 1-to-1 correspondence between such deformations of

the A theory and of the B theory.

1. Flavor symmetry

Let’s start with the flavor symmetries of A and B theories. The A theory is pure massless

SQCD, so it’s classical flavor symmetry is

Gclassical
F = SU(Nf )L × SU(Nf )D × U(1)V × U(1)A × U(1)R0 (5)

where the vector-like U(1)V is the baryon number symmetry, henceforth renamed U(1)B,

while U(1)R0 is the pure-R symmetry. In the quantum A theory, the axial symmetry and

the pure-R symmetry are anomalous, but they have an anomaly-free combination U(1)R,

thus the net symmetry of the quantum A theory is

GF = SU(Nf )L × SU(Nf )D × U(1)B × U(1)R . (4)

Moreover, in SQCD with Nf > Nc the spontaneous chiral symmetry breaking is not nec-

essary, so the IR theory has the same flavor symmetry (4) as the UV theory. Or rather,
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the theory has a moduli space of vacua, some of which may spontaneously break the chiral

symmetry but other vacua do not. In particular, the conformal point of the moduli space —

where 〈M〉 = 0, 〈B〉 = 0, 〈B̃〉 = 0 — has completely unbroken flavor symmetry (4).

For future reference, let me tabulate the color and the flavor quantum numbers of all the

A theory’s UV fields:

fields

QN

SU(Na) SU(Nf )L SU(Nf )D B R(boson) R(fermion)

Aµ, λα Adjoint 1 1 0 0 +1

Q,ΨQ NA
c Nf 1 + 1

Na
1− Na

Nf
−Na

Nf

Q̃, Ψ̃Q Na 1 Nf − 1
Na

1− Na

Nf
−Na

Nf (6)

Note#1: The U(1)B charge is normalized as the baryon number, that’s why the quarks and

the squarks have B = +1/Na while the antiquarks and antisquarks have B = −1/Na.

Note#2: The R charge of the quarks and antiquarks follow from canceling the color-color-R

anomaly, thus

Index(adj)× R(λ) + 2Nf × Index(fund)×R(ΨQ, Ψ̃Q) = 0, (7)

where Index(adj) = Nc(A) = Na and Index(fund) = 1
2 . Also, for any mixture of R-symmetry

with the axial symmetry R(λ) = +1, hence R(ΨQ, Ψ̃Q) = −Na/Nf as in the table (6). As

to the squarks and antisquarks, their R charge follows as R(Q, Q̃) = R(ΨQ, Ψ̃Q) + 1.

Now consider the B theory. Its SQCD core has exactly the same anomaly-free flavor

symmetry

GF = SU(Nf )L × SU(Nf )D × U(1)B × U(1)R (4)

as the A theory. Adding the gauge-singlet Φf ′f fields with Yukawa couplings to the quarks

and antiquarks does not introduce additional symmetries because we cannot transform the
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Φ’s — and only the Φ′ — in any way without affecting the superpotential

WB = λ
∑

c,f,f ′

Φf ′f q̃f ′,cq
c
f . (2)

At the same time, this superpotential is invariant under all the flavor symmetries (4) provided

the quarks, the antiquarks, and the singlets transform in correlated ways. Thus, the net flavor

symmetry of the B theory is the same (4) as of the A theory, quod erat demonstrandum.

Again, for future reference, let me tabulate the color and the flavor quantum numbers

of all the B theory’s UV fields:

fields

QN

SU(Nb) SU(Nf )L SU(Nf )D B R(boson) R(fermion)

Aµ, λα Adjoint 1 1 0 0 +1

q, ψα
q Nb Nf 1 + 1

Nb
1− Nb

Nf
−Nb

Nf

q̃, ψ̃α
q NB

c 1 Nf − 1
Nb

1− Nb

Nf
−Nb

Nf

Φ, ψα
φ 1 Nf Nf 0 +2Nb

Nf
2Nb

Nf
− 1

(8)

Note#3: It’s a matter of convention whether we assign the quarks to a fundamental of

an antifundamental multiplet of the SU(Nf )L flavor group, and likewise for the antiquarks

belonging to an Nf or an Nf multiplet of the SU(Nf )D. For the duality purposes, we want

the A-quarks Q and the B-quarks q to have opposite SU(Nf )L quantum number, and ditto

for the A-antiquarks Q̃ and the B-antiquarks q̃. To avoid confusion, I chose both Q and Q̃ to

be in the fundamental flavor multiplets while q and q̃ are therefore in the antifundamental

multiplets.

Note#4: The quantum numbers of the gauge singlets Φ follow from invariance of the su-

perpotential (2) under all the flavor symmetries. Or rather, WB should be invariant WRT

SU(Nf )L × SU(Nf )D × U(1)B and have R-charge R(W ) = +2.
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2. Anomaly matching conditions

If the flavor symmetry (4) is not spontaneously broken, the IR regime of a theory

must have massless composite fermions whose spectrum obeys ’t Hooft’s anomaly matching

conditions:

∀F1, F2, F3 ∈ GF : trcomposite

(
F1{F2, F3}

)
= trelementary

(
F1{F2, F3}

)
. (9)

Note: both traces are taken over massless LH Weyl fermions — elementary or composite —

while the RH Weyl fermions are treated as conjugates of the LH Weyl fermions.

Now, suppose two theories A and B are IR-dual to each other. Then they have the same

unbroken flavor symmetry and the same spectrum of massless composite fermions, whatever

it might be, hence

trA, composite

(
F1{F2, F3}

)
= trB, composite

(
F1{F2, F3}

)
. (10)

OOH, the UV regimes of the two theories have different spectra of elementary fermionic

fields, the anomaly matching conditions (9) for both theories with eq. (10) gives us

trA, elementary

(
F1{F2, F3}

)
= trAorB, composite

(
F1{F2, F3}

)
= trB, elementary

(
F1{F2, F3}

)
.

(11)

Thus, the two theories A and B can be IR dual to each other only if their respective spectra

of elementary fermions have matching flavor anomalies,

∀F1, F2, F3 ∈ GF : trA, elementary

(
F1{F2, F3}

)
= trB, elementary

(
F1{F2, F3}

)
. (12)

So let us check these conditions for the Seiberg’s A theory and B theory. Since the

flavor symmetry (4) has two non-abelian SU(Nf ) factors and two abelian factors U(1)B and

U(1)R, the mathematically allowed anomalies are limited to the following combinations of

generators F1,2,3:
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1. All 3 generators belong to the same SU(Nf ) subgroup:

tr
(
La{Lb, Lc}

)
= dabc × Inet3 WRT SU(Nf )L , (13)

tr
(
Da{Db, Dc}

)
= dabc × Inet3 WRT SU(Nf )D , (14)

where I3 is the cubic index of a multiplet (WRT the appropriate SU(Nf ) factor) and

Inet3 is the net cubic index of all the LH fermions of the theory. For a theory where all

fermions belong to fundamental, antifundamental, or adjoint multiplets

Inet3 = #(Nf ) − #(Nf ). (15)

Therefore, to check the anomaly match between the A and B theories, we should

simply count the fundamental and the antifundamental multiplets of the two theories’

fermions. Thus, for the SU(Nf )L factor, we have:

A theory has Na fundamentals in ΨQ and no antifundamentals, hence Inet3 = +Na.

B theory has Nb antifundamentals in ψq and Nf fundamentals in ψφ, hence

Inet3 = −Nb + Nf = +Na . (16)

Match.

For the SU(Nf )D factor we have a similar counting:

A theory has Na fundamentals in Ψ̃Q and no antifundamentals, hence Inet3 = +Na.

B theory has Nb antifundamentals in ψ̃q and Nf fundamentals in ψφ, hence

Inet3 = −Nb + Nf = +Na . (17)

Match.
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2. Two generators belong to the same SU(Nf ) factor while the third generator is abelian.

In this case,

tr
(
B{La, Lb}

)
= 2δab ×ABLL, (18)

ABLL =
∑

LHWF

B × Index[SU(nf )L]×Multiplicity[color, SU(Nd)D], (19)

tr
(
B{Da, Db}

)
= 2δab ×ABDD, (20)

ABDD =
∑

LHWF

B × Index[SU(nf )D]×Multiplicity[color, SU(Nd)L], (21)

tr
(
R{La, Lb}

)
= 2δab ×ARLL, (22)

ARLL =
∑

LHWF

R× Index[SU(nf )L]×Multiplicity[color, SU(Nd)D], (23)

tr
(
R{Da, Db}

)
= 2δab ×ARDD, (24)

ARDD =
∑

LHWF

R× Index[SU(nf )D]×Multiplicity[color, SU(Nd)L], (25)

so to make sure all these anomalies match between the A and B theories, we need to

check that

ABLL[A] = ABLL[B], ABDD[A] = ABDD[B],

ARLL[A] = ARLL[B], ARDD[A] = ARDD[B].
(26)

Let’s start with the ABLL anomaly coefficients.

A theory: the only fermions with non-trivial SU(Nf )L quantum numbers are the

quarks ΨQ, so other fermions do not contribute to the anomaly in question. The

quark multiplet has B = +1/Na, SU(Nf )L Index = 1
2 , and color × SU(Nf )D

multiplicity = Na × 1, hence

ABLL[A] =
+1

Na
× 1

2
×Na =

1

2
. (27)

B theory: this time, both the quarks ψq and the ψφ gauge singlets have non-trivial

SU(Nf )L quantum numbers, but the ψφ has zero baryon charge, so only the quarks
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ψq contribute to the anomaly in question. Specifically, the ψq have B = +1/Nb,

SU(Nf )L Index = 1
2 , and color× SU(Nf )D multiplicity = Nb × 1, hence

ABLL[B] =
+1

Nb
× 1

2
×Nb =

1

2
. (28)

Match.

Next, the ABDD anomalies of the A and B theories match in exactly similar way, so

let me skip the formulae.

Now, the less obvious ARLL anomalies of the two theories.

A theory: again, only the quarks contribute to this anomaly because all other

fermions are SU(Nf )L singlets. The R-charge of the quarks is −Na/Nf , hence

ARLL[A] =
−Na

Nf
× 1

2
×Na = − N2

a

2Nf
. (29)

B theory: this time, both the quarks ψq and the color-singlets ψφ contribute to the

ARLL anomaly. Both types of fermion belong to multiplets of Index = 1
2 ; the

quarks ψq have R = −Nb/Nf and color× SU(Nf )D multiplicity = Nb × 1, while

the ψφ have R = 2(Nb/Nf )− 1 and multiplicity = 1×Nf . Consequently,

ARLL(ψq) =
−Nb

Nf
× 1

2
×Nb = − N2

b

2Nf
, (30)

ARLL(ψφ) =
2Nb −Nf

Nf
× 1

2
×Nf =

2Nb −Nf

2
, (31)

ARLL[B](net) = ARLL(ψq) + ARLL(ψφ)

= − 1

2Nf

(
Nf (2Nb −Nf ) − N2

b

)
. (32)

∗ But

Nf (2Nb −Nf ) − N2
b = −(Nf −Nb)

2 = −N2
a , (33)

so the ARLL anomalies of the A and B theories match.

8



Next, the ARDD anomalies are similar to the ARLL anomalies, so let me be brief. In

the A theory, only the antiquarks Ψ̃Q contribute to this anomaly, while in the B theory

this anomaly comes from both the antiquarks ψ̃q and the color-singlet fields ψφ. The

relevant indices, multiplicities, and R charges of these fields are similar to what we had

in the ARLL case, so we get

ARDD[A] = ARDD(Ψ̃Q) =
−Na

Nf
× 1

2
×Na = − N2

a

2Nf
, (34)

while

ARDD(ψ̃q) =
−Nb

Nf
× 1

2
×Nb = − N2

b

2Nf
, (35)

ARDD(ψφ) =
2Nb −Nf

Nf
× 1

2
×Nf =

2Nb −Nf

2
, (36)

ARDD[B](net) = ARDD(ψq) + ARD(ψφ)

= − 1

2Nf

(
Nf (2Nb −Nf ) − N2

b

)

= − N2
a

2Nf
.(37)

Match.

3. Finally, the purely abelian anomalies tr(R3) and tr(RB2), plus the trace anomaly tr(R).

In principle, one should also check the tr(B3), tr(BR2, and tr(B) anomalies, but by the

charge-conjugation symmetry of both A and B theories, the last 3 traces automatically

vanish. Thus, all we need to calculate are the 3 abelian anomaly coefficients

ABBR =
∑

LHWF

B2 × R×mult,

ARRR =
∑

LHWF

R3 ×mult,

AR =
∑

LHWF

R ×mult,

(38)

where ‘mult’ denotes net multiplicity WRT to both color and flavor symmetries. So

let’s calculate these three coefficients for both A and B theories and make sure they

match.
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A theory fermions:

ΨQ of B =
+1

Na
, R = −Na

Nf
, mult = NaNf ,

Ψ̃Q of B =
−1

Na
, R = −Na

Nf
, mult = NaNf ,

λ of B = 0, R = +1, mult = N2
a − 1.

(39)

Consequently,

ABBR[A] =

(
1

Na

(2

× −Na

Nf
×NfNa × 2 + 0

= −2, (40)

ARRR[A] =

(−Na

Nf

)3

××NfNa × 2 + (+1)3 × (N2
a − 1)

= −2
N4

a

N2
f

+ N2
a − 1, (41)

AR[A] =

(−Na

Nf

)
××NfNa × 2 + (+1)× (N2

a − 1)

= −2N2
a + N2

a − 1 = −N2
a − 1. (42)

B theory fermions:

ψq of B =
+1

Nb
, R = −Nb

nf
, mult = NbNf ,

ψ̃q of B =
−1

Nb
, R = −Nb

nf
, mult = NbNf ,

ψφ of B = 0, R =
2Nb

Nf
− 1, mult = N2

f ,

λ of B = 0, R = +1, mult = N2
b − 1.

(43)

Consequently,

ABBR[B] =

(
1

Nb

)2

× −Nb

Nf
×NbNf × 2 + 0 + 0

= −2, (44)
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ARRR[B] =

(−Nb

Nf

)3

×NbNf × 2 +

(
2Nb −Nf

Nf

)3

×N2
f + (+1)3 × (N2

b − 1)

= −2
N4

b

N2
f

+
(2Nb −Nf )

3

Nf
+ N2

b − 1, (45)

AR[B] =

(−Nb

Nf

)
×NbNf × 2 +

(
2Nb −Nf

Nf

)
×N2

f + (+1)× (N2
b − 1)

= −2N2
b + Nf (2Nb −Nf ) + N2

b − 1. (46)

By inspection, ABBR[A] = ABBR[B], match, while the other two anomalies take a

bit of algebra:

AR[B] = −N2
b + 2NfNb −N2

f − 1 = −(Nf−Nb)
2 − 1 = −N2

a − 1 = AR[A], (47)

match, and

ARRR[B] = −2
N4

b

N2
f

+
(2Nb −Nf )

3

Nf
+ N2

b − 1

= −2
N4

b

N2
f

+ 8
N3

b

Nf
− 12N2

b + 6NbNf −N2
f + N2

b − 1

=
−2

N2
f

(
N4

b − 4N3
bNf + 6N2

b − 4NbN
3
f + N4

f

)

− 2NbNf + N2
f + N2

b − 1

= −2
(Nf −Nb)

4

N2
f

+ (Nf −Nb)
2 − 1 = −2

N4
a

N2
f

+ N2
a − 1

= ARRR[A],

(48)

match.

Altogether, all the flavor anomalies of the A theory and the B theory match each other.
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3. Chiral rings

As I explained earlier in class, the chiral ring of the A theory is generated by the mesons

Mf ′f , baryons Bf1,...,fn (totally antisymmetric in their n = Na flavor indices, and antibaryons

B̃f ′

1,...,f
′

n (also totally antisymmetric in their flavor indices). In principle there is also the

gaugino condensate S, but the the theory with massless quarks S
c.r.
= 0. Here are the flavor

quantum numbers of the chiral ring generators:

fields

QN

SU(Nf )L SU(Nf )D B R

M Nf Nf 0 2− 2Na

Nf

B
(antisymmetric tensor

Na upper indices

)
1 +1 Na(Nf−Na)

Nf

B̃ 1
(antisymmetric tensor

Na upper indices

)
−1

Na(Nf−Na)
Nf (49)

As to the B theory, it also has chiral mesonsMf ′f , baryons bf1,...fn′
(antisymmetric in n′ = Nb

flavor indices) and antibaryons b̃f ′

a,...,f ′

n′
, albeit with lower rather then upper indices. But

the mesons vanish in the on-shell chiral ring by the Φf ′f equations of motion, Mf ′f
c.r.
= 0.

Instead, the chiral ring is generated by the baryon, antibaryon, and the Φ operators. Here

are their flavor quantum numbers:

fields

QN

SU(Nf )L SU(Nf )D B R

Φ Nf Nf 0 2Nb

Nf

b
(antisymmetric tensor

Nb lower indices

)
1 +1

Nb(Nf−Nb)
Nf

b̃ 1
(antisymmetric tensor

Nb lower indices

)
−1

Nb(Nf−Nb)
Nf (50)

Since Nb = Nf−Nc, — and hence an SU(Nf ) antisymmetric tensor with Nb lower indices

is equivalent to an antisymmetric tensor with Na upper indices, — the B-theory baryons b
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have the same flavor quantum numbers as the A-baryons B, the B-theory antibaryons b̃ have

the same flavor QN as the A-theory baryons B̃, and the B-theory Φ fields have the same

flavor QN as the A-theory mesons M.

Finally, in the superconformal deep IR limits of the two theories, the scaling dimensions

of primary chiral operators follow from their R-charges,

∆ = coeff32R. (51)

Consequently,

∆(Φ) = ∆(M) = 3
Nb

Nf
= 3 − 3

Na

Nf
(52)

while

∆(b) = ∆(b̃) = ∆(B) = ∆(B̃) =
3NaNb

2Nf
. (53)

Altogether, the two theories’ chiral rings have similar generators with similar flavor

quantum numbers and similar scaling dimensions in the IR SCFT. This is in good agreement

with the A and B theories being IR-dual to each other.

4. Moduli Spaces and Chiral Ring Equations

The generators of a chiral ring are usually related by some polynomial constraints and/or

on-shell equations of motion. Thus, to completely specify a choral ring of a theory, we should

not only specify the generators but also all the off-shell and on-shell relations between them.

In the previous section, we saw that the chiral rings of the A and B theories have similar

generators with similar flavor quantum numbers, and in this section we shall see that the

two chiral rings also have similar relations between their generators.

We shall also look at the moduli spaces of the A and B theories. Indeed, SQCDs with

Nf ≥ Nc have continuous families of supersymmetric vacua parametrized by VEVs of various

mesons, baryons, and antibaryons. Although any such non-zero VEV would spontaneously

break the conformal symmetry of the IR theory, it would not break SUSY, so the moduli

space should have a Kähler geometry. Moreover, the complex structure of the moduli space
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— i.e., the holomorphic relations between meson, baryon, and antibaryon VEVs — follows

from the chiral ring equations for the corresponding generators. For example, we saw that

in SQCD with Nf = Nc, the chiral ring generators Mf ′f , B, and B̃ obey the constraint

equation

det(M) − B̃ × B c.r.
= Λ2N . (54)

Consequently, the moduli space of the theory is parametrized by the VEVs
〈
Mf ′f

〉
, 〈B〉,

〈B̃〉 subject to a holomorphic relation

det
(〈

Mf ′f
〉)

− 〈B̃〉 × 〈B〉 = Λ2N . (55)

Now consider the Seiberg’s A and B theories. For small VEVs of various operators, the

moduli space geometry of either theory should depend only on the theory’s IR physics rather

than on its UV features. So if the A and B theory are truly IR-dual to each other, they

should have similar moduli spaces geometries, at least in the vicinity of the superconformal

point where all VEVs = 0. Similar geometries means similar complex structures and similar

Kähler functions, but alas the non-perturbative Kähler functions are out of our reach, so

we cannot check their similarities for the A-theory’s and B-theory’s moduli spaces. On the

other hand, the complex structure of the moduli space follows from the chiral ring equations,

so once we see that the A and B theories have similar chiral ring equations, we shall know

that their respective moduli spaces indeed have similar complex structures.

With all these preliminaries, let’s look at the chiral ring equations of the two theories,

starting with the pure-SQCD A theory. Classically, the mesons, the baryons, and the an-

tibaryons of the A theory obey several constraints:

rank(M matrix) ≤ n
def
= Na , (CA1)

Mf ′[f × Bf1,...,fn] = 0, (CA2)

B̃[f ′

1,...,f
′

n ×Mf ′]f = 0, (CA3)

det
([
n× n submatrix(M)

]f ′

1,...,f
′

n;f1,...,fn
)

= B̃f ′

1,...,f
′

n × Bf1,...,fn . (CA4)
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Indeed, in matrix notations M = Q̃ × Q where Q̃ and Q are rectangular matrices with

shorter side Na < Nf , hence the rank constraint (CA1). Next,

Mf ′[f × Bf1,...,fn] = Q̃f ′ ×Q[f ×Qf1 · · ·Qfn] 〈〈 color indices suppressed 〉〉. (56)

Since the quarks are scalar bosons, antisymmetrizing their flavor indices requires also an-

tisymmetrizing their colors, which is impossible for n + 1 squark fields and only n colors,

hence the constraint (CA2). The (CA3) constraint obtains in exactly the same way, so let

me skip the details. Finally, the (CA4) constraint is SU(Nf )L × SU(Nf )D invariant, so we

may check it in any particular flavor basis we like. So let’s work in the basis where non-zero

matrix elements of the rank ≤ n matrix M are in the n× n upper left block of the matrix,

M =

(
M̂ 0

0 0

)
(57)

Consequently, in the same basis

Q = ( Q̂ 0 ) , Q̃ =

( ̂̃
Q

0

)
, where M̂ =

̂̃
Q× Q̂, (58)

and therefore

B1,...,n = det Q̂, B̃1,...,n = det
̂̃
Q, all other Bf1,...fn = 0, B̃f ′

1,...f
′

n = 0. (59)

At the same time

det(M̂) = det(
̂̃
Q)× det(Q̂) = B̃1,...,n × B1,...,n (60)

while

det
(
any other n× n submatrix of M

)
= 0, (61)

in perfect agreement with the constraint (CA4).
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The constraints (CA1) through (CA4) are classical, but what happens to them in the

quantum theory? In principle, they could suffer from quantum corrections — just like they do

for Nf = Nc — but in SQCD with Nf > Nc massless flavors there are no such corrections.

In particular, in the conformal window of SQCD any such corrections would prevent the

theory from having a superconformal vacuum with 〈M〉 = 0, 〈B〉 = 0, and 〈B̃〉 = 0, so we

know the quantum theory has the same constraints (CA1–4) as the classical theory.

Also, in the massless SQCD the only on-shell chiral ring equation is S
c.r.
= 0, so as far as

the M,B, B̃ chiral ring generators are concerned, the only relevant chiral ring equations are

the constraints (CA1–4).

Now consider the B theory. It’s also an SQCD but with extra singlets Φf ′f , thanks to

which the dual mesons Mf ′f has no VEVs, or in chiral ring terms obey Mf ′f
c.r.
= 0. Instead

the chiral ring is generated by the dual baryons b, dual antibaryons b̃, and the Φ fields

themselves. In terms of these generators, the chiral ring equations (CA1–4) of the A theory

become

rank(Φ matrix) ≤ Na = Nf − Nb , (CB1)

Φf ′f × bf,... = 0, (CB2)

b̃f ′,... × Φf ′f = 0, (CB3)
[
minorNb

(Φ)
]
f ′

1
,...,f ′

Nb
;f1,...,fNb

= b̃f ′

1
,...,f ′

Nb

× bf1,...,fNb
. (CB4∗)

so our next task is to check that the b, b̃,Φ generators indeed obey these equations.

Let’s start with the (CB1) constraint. From the dual quarks point of view 〈Φ〉 is a mass

matrix, for 〈Φ〉 6= 0 the B theory has rank(〈Φ〉) massive quark flavors and Nf − rank(〈Φ〉)
massless flavors. But we have learned earlier in class that SQCD with a number Nf0 of

massless flavors in the range

0 < Nf0 < Nc (62)

— plus any number of massive flavors — has no supersymmetric vacuum states; instead,

the massless squark VEVs run away to infinity. Consequently, in a SUSY vacuum of the B
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theory the number of massless flavors must lie outside the range (62), thus either

Nf0 = Nf − rank(〈Φ〉) ≥ Nb =⇒ rank(〈Φ〉) ≤ Nf − Nb = Na (63)

— exactly as in eq. (CB1), — or else

rank(〈Φ〉) = Nf (64)

and hence no massless flavors at all. But an SQCD without any massless flavors has a

non-zero gaugino condensate

〈S〉 =
[
Λ
3Nb−Nf

B × det(λΦ)
]1/Nb

× Nb
√
1, (65)

which generates the non-perturbative superpotential for the Φ fields,

Wn.p.(Φ) =

(
numeric

constant

)
×
[
Λ
3Nb−Nf

B × det(λΦ)
]1/Nb

. (66)

Unfortunately, this superpotential has no stationary points for any Φ matrices of rank = Nf :

∀Φ with det(Φ) 6= 0 :
∂Wn.p.

∂Φf ′f
6= 0, (67)

which means we cannot have 〈Φ〉 of rank = Nf in any supersymmetric vacuum of the B

theory. Since earlier we have similarly ruled out 〈Φ〉 matrices of ranks between Na and Nf ,

the only allowed option is to have rank(〈Φ〉) ≤ Na, exactly as in the constraint (CB1).

Next, consider the baryons and antibaryons of the B theory. If any of the Nb dual squarks

qf comprising a baryon bf,... happens to be massive, that squark cannot have a classical VEV

hence also
〈
bf,...

〉
= 0. Likewise, if any of the Nb antisquarks q̃f ′ comprising an antibaryon

b̃f ′,... is massive then that antibaryon also has a zero VEV. In terms of the 〈Φ〉 matrix, these

classical constraints amount to (CB2) and (CB3).
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In the quantum theory, we have the same constraints as chiral ring equations. To see

how that works, consider an infinitesimal non-linear variation of the anti-quark superfields

δq̃c,f ′ = ǫC
f2,...,fNb

f ′ ǫc,c2,...,cNb
qf2c2 · · · q

fNb
cNb

(68)

for some fixed tensor C
f2,...,fNb

f ′ in flavor indices. At the same times, we do not vary the

quarks at all, δqcf = 0. Under this variation, the tree-level superpotential of the B theory

varies by

δWtree = λΦf ′fqcf × ǫC
f2,...,fNb

f ′ ǫc,c2,...,cNb
qf2c2 · · · q

fNb
cNb

= ǫλC
f2,...,fNb

f ′ × Φf ′f bf,f2,...,fNb
.

(69)

At the same,

δK = Z tr(δq̃ × e−2V q) = ǫ× a combination of Nb − 1 squarks and one e−2V q, (70)

Viewing the RHS here as some kind of a current, we see that it involves chiral and antichiral

SF of different species, so it has no Konishi anomaly. Consequently,

δWtree
c.r.
= 0 (71)

and therefore

Φf ′fbf,f2,...,fNb

c.r.
= 0 (CB2)

for any combinations of the un-contracted flavor indices.

Likewise, a non-linear variation of the B-theory’s quarks

δqcf = ǫC
f ′

2,...,f
′

Nb

f ǫc,c2,...,cNb q̃c2,f ′

2
· · · q̃cNb

,f ′

Nb

(72)

leads to

δWtree = ǫλC
f ′

2,...,f
′

Nb

f × Φf ′f b̃f ′,f ′

2
,...,f ′

Nb

c.r.
= anomaly = 0 (73)

and hence

Φf ′f × b̃f ′,f ′

2
,...,f ′

Nb

c.r.
= 0. (CB3)

Finally, the constraint (CB4∗). The way I wrote it, I identified the Φf ′f of the B theory

with the Mf ′f mesons of the A theory. But such literal identification Φf ′f = Mf ′f works
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only for the renormalized fields of the same non-canonical dimension ∆ = 3Nb/Nf . In terms

of the un-renormalized fields which keep their canonical dimensions — 1 for the elementary

Φf ′f but 2 for the mesons Mf ′f made from 2 elementary scalars — the duality between A

and B theory works as

Mf ′f = µ× Φf ′f (74)

for some constant µ of dimension mass+1. I shall let you calculate this constant in your next

homework set#9. Meanwhile, let me simply rewrite the constraint (CB4∗) as

b̃f ′

1
,...,f ′

Nb

× bf1,...,fNb
= const×

[
minorNb

(Φ)
]
f ′

1
,...,f ′

Nb
;f1,...,fNb

. (CB4)

To check the constraint (CB4), we first note that it’s invariant WRT SU(Nf )L ×
SU(Nf )D, so once we verify it in any particular flavor basis it’s then automatically valid in

any other flavor bases. So let’s wok in the basis where the 〈Φ〉 matrix is diagonal,

〈Φ〉 = diag
(
Φ11,Φ22, . . . ,Φnn, 0, . . . , 0) 〈〈 note rank(〈Φ〉) ≤ n = Na 〉〉. (75)

In this basis, eq. (CB4) becomes

b̃n+1,...,Nf
× bn+1,...,Nf

= const× Φ11Φ22 · · ·Φnn, (76)

all other b̃f ′

1
,...,f ′

Nb

× bf1,...,fNb
= 0. (77)

To verify these equations, let first assume rank(〈Φ〉) = Na so there are precisely Na massive

and Nb massless flavors of dual quarks and antiquarks. All baryons comprising a massive

quark flavor — and all antibaryons comprising a massive antiquark flavor — have zero VEVs,

hence eq. (77). As to the massless flavors — whose number is the same as the number of

B-theory’s colors — the mesons and the baryons we can make from them obey

det(Mmassless) − b̃massless × bmassless
c.r.
= Λ2Nb

eff . (78)

In this formula,

det(Mmassless)
c.r.
= 0 (79)
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because in the B theory all Mf ′f
c.r.
= 0,

b̃massless × bmassless = b̃n+1,...,Nf
× bn+1,...,Nf

, (80)

and Λeff is the Λ of the effective low-energy theory from which all massive quarks have been

integrated out,

Λ2Nb

eff = Λ
3Nb−Nf

B × (λΦ11)(λΦ22) · · · (λΦnn). (81)

Plugging all these formula into eq. (78), we immediately obtain

b̃n+1,...,Nf
× bn+1,...,Nf

= const× Φ11Φ22 · · ·Φnn, (82)

exactly as in eq. (76).

Finally, suppose rank(〈Φ〉) < Na, so the B theory has less then Na massive flavors and

more than Nb massless flavors. Again, the baryons and the antibaryons comprising any

massive flavors have vanishing VEVs. As to the baryons and the antibaryons made only

from the massless flavors, their products are related to the minors of the B-theory’s meson

matrixMf ′f without any quantum corrections because Nf,massless > Nb. But in the B theory

allMf ′f
c.r.
= 0, hence b̃×b c.r.

= 0. Altogether, all b̃×b c.r.
= 0 for all flavors, massive and massless.

At the same time, all degree-Nb minors of matrix of rank < Nf − Nb vanish, so we have

zeros on both sides of eq. (CB4). Quod erat demonstrandum.

5. Deformations

Consider slight deformations of the Seiberg’s A and B theories. In particular, we may

give small quark masses to the A theory, thus

W tree
A = −

∑

f,f ′

Mff ′Q̃cf
′Qc,f . (83)

In the B theory, explicit quark masses would be equivalent to constant shifts of the Φf ′f

fields, so there is no point of adding them to the theory. But instead, we may give small
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O’Raifeartaigh terms to the gauge-singlet Φf ′f , thus

W tree
B = λ

∑

c,f,f ′

Φf ′fqcf q̃c,f ′ − µ
∑

f,f ′

Mff ′Φf ′f . (84)

In either case, the deformation operator is relevant and explicitly breaks the conformal sym-

metry of the IR theory. However, as long as the deformation is much smaller than the energy

scale EC at which the UV theory flows to its IR fixed point and becomes approximately con-

formal, the effects of the deformation are governed by the approximately superconformal

IR theory rather than by the UV theory. Consequently, if the Seiberg’s A theory and B

theory are truly IR-dual to each other, then mass deformation of the A theory and the

O’Raifeartaigh deformation of the B theory should have exactly similar effects.

Verifying that this is indeed the case is an interesting exercise, but I am going to leave

it out from these notes and make it a part of your next homework set#9.

6. Double Duality

To complete these notes, let me show that the Seiberg dual of the Seiberg dual theory

B is equivalent to the original theory A. Indeed, at the core of the B theory is SQCD with

Nf flavors and NB
c colors, so its Seiberg dual — which I shall temporarily call the C theory

— includes SQCD with the same Nf flavors but NC
c = Nf −NB

c = NA
c colors, same as the

original theory A. Also, since the B-theory’s quarks qcf and antiquarks q̃c,f ′ have lower flavor

indices, the C-theory’s quarks and antiquarks should have upper flavor indices, same as Qc,f

and Q̃f ′

c of the A theory. In addition, the Seiberg duality endows the C theory with N2
f

gauge-singlet fields φf ′f with the same flavor quantum numbers as the B-theory’s mesons

Mf ′f and with Yukawa couplings to the C-theories quarks and antiquarks,

WC ⊃ λ′
∑

c,f,f ′

φf ′f × Q̃f ′

c Q
c,f . (85)

But besides its SQCD core, the B theory has its own gauge-singlet fields Φf ′f , and the second

Seiberg duality B → C does not take them away. Furthermore, in the B-theory’s Yukawa
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couplings

WB = λ
∑

c,f,f ′

Φf ′f × qcf q̃c,f ′ = λ
∑

f,f ′

Φf ′f ×Mf ′f , (86)

the B-theory’s mesons Mf ′f are replaced in the C theory with the φf ′f fields, or rather with

the µ′φf ′f for some constant µ′ of dimension mass+1, thus

W tree
C = λ′

∑

c,f,f ′

φf ′f × Q̃f ′

c Q
c,f + λµ′

∑

f,f ′

Φf ′f × φf ′f . (87)

But the red term in this superpotential is nothing but the mass term for all the Φf ′f and

φf ′f gauge singlets, and this mass eliminates all those gauge-single fields from the deep-IR

limit of the theory. Instead, all we have in the deep-IR limit of the C theory is its SQCD

core with Nf flavors and NC
c = NA

c colors — exactly as in the A theory. Thus, performing

the Seiberg duality twice we indeed come back to the original A theory.
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