
Gaussian Integrals and Gaussian Wave Packets

First, a Theorem: For any complex α with a positive real part and for any complex β,

I =

+∞
∫

−∞

dx exp
(

−α(x+ β)2
)

=

√

π

α
. (1)

Proof: changing integration variable from x to y =
√
α(x+ β), we get

I =

∫

Γ

dy√
α

exp(−y2) (2)

where the integral is over a tilted line in the complex plane,

(3)

The tilt angle of this line is −1
2
arg(α), so for Reα > 0 this angle is between −45◦ and +45◦,

hence exp(−y2) → 0 at both asymptotic ends of the line.
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In complex analysis, the contour integrals of analytic functions are invariant under contour

deformations as long as the contour does not cross any singularities of the integral and the end

points — if any — stay in the same place. The integrand of (2) is analytic and does not have

any singularities at finite y, so we may deform the contour any way we like as long as its ends

stay at complex infinity. Or rather, the ends stay at infinity and the directions in which they

approach ∞ stays within 45◦ degrees of the real axis so that the integrand diminishes rather

than blows up. In particular, we may tilt the red line (3) and move it back to the real axis,

thus

I =
1√
α

∫

real

axis

dy exp(−y2) =
1√
α
×

√
π. (4)

Quod erat demonstrandum.

Now let’s apply this theorem to the Gaussian wave packets and their Fourier transforms.

For simplicity, let’s work in one space dimension where a Gaussian wave packet has form

Ψ(x) = Ψ0 × eik0x × exp
(

−1
2
A(x− x0)

2
)

. (5)

Usually, A is a real and positive parameter related to the packet’s width ∆x, or more accurately

root-mean-square deviation of x from the packet’s center x0 as weighed by |Ψ(x)|2:
∫

|Ψ|2 dx = |Ψ0|2
∫

exp(−A(x− x0)
2 dx = |Ψ0|2 ×

√

π

A
, (6)

∫

|(x− x20)×Ψ|2 dx = |Ψ0|2
∫

(x− x0)
2 exp(−A(x− x0)

2 dx = |Ψ0|2 ×
√
π

2A3/2
, (7)

hence (∆x)2
def
=

∫

(x− x0)
2 × |Ψ|2dx

∫

|Ψ|2dx =
1

2A
, (8)

so the packet’s width is

∆x =
1√
2A

. (9)

However, sometimes people use Gaussian wave packets with complex A, which is OK as long

as ReA > 0; in this case,

∫

|Ψ|2 dx = |Ψ0|2
∫

exp
(

−Re(A)× (x− x0)
2
)

dx = |Ψ0|2 ×
√

π

Re(A)
, (10)
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∫

|(x− x20)×Ψ|2 dx = |Ψ0|2
∫

(x− x0)
2 exp

(

−Re(A)× (x− x0)
2
)

dx = |Ψ0|2 ×
√
π

2(Re(A))3/2
,(11)

hence (∆x)2
def
=

∫

(x− x0)
2 × |Ψ|2dx

∫

|Ψ|2dx =
1

2Re(A)
, (12)

so the packet’s width is

∆x =
1

√

2Re(A)
. (13)

Next, consider the Fourier transform of a wave packet

Ψ̃(k) =

∫

dx e−ikxΨ(x), Ψ(x) =

∫

dk

2π
e+ikx Ψ̃(k). (14)

For the Gaussian wave packet (5), this Fourier transform becomes

Ψ̃(k) =

∫

dx e−ikx × Ψ0e
ik0x × exp

(

−1
2
A(x− x0)

2
)

= Ψ0

∫

dx exp
(

−1
2
A(x− x0)

2 + i(k0 − k)x
)

(15)

where the net exponent amounts to

−1
2
A(x− x0)

2 + i(k0 − k)x = −1
2
A(x− x0)

2 + i(k0 − k)(x− x0) + i(k0 − k)x0

= −A

2

(

(x− x0) + i
(k0 − k)

A

)2

− (k0 − k)2

2A
+ i(k0 − k)x0

(16)

where the last two terms do not depend on x while the first term has the form of −α(x+ β)2

for α = 1
2
A and β = −x0 + i(k0 − k)/A. Consequently,

Ψ̃(k) = Ψ0

∫

dx

(

−A

2

(

x− x0 +
i(k0 − k)

A

)2

− (k0 − k)2

2A
+ i(k0 − k)x0

)

= Ψ0 exp

(

−(k0 − k)2

2A

)

exp
(

ix0(k0 − k)
)

×
∫

dx exp

(

−A

2

(

x− x0 +
i(k0 − k)

A

)2
)

= Ψ0 exp

(

−(k0 − k)2

2A

)

exp
(

ix0(k0 − k)
)

×
√

2π

A
,

(17)
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or

Ψ̃(k) =

[

√

2π

A
eik0x0 Ψ0

]

× e−ix0k × exp

(

−(k − k0)
2

2A

)

. (18)

Thus, the Fourier transform of a Gaussian wave packet in x space is itself a Gaussian wave

packet in k space. Moreover, the width parameters of the two Gaussian packets are related as

Ak =
1

Ax
, (19)

hence

(∆k)2 =
1

2ReAk
=

1

2Re(1/Ax)
. (20)

Consequently, the product of the x-space and the k-space widths of the same packet amounts

to

1

(∆x)2
× 1

(∆k)2
= 2Re(A)× 2Re(1/A) =

4(ReA)2

|A|2 , (21)

=⇒

∆x×∆k =
1

2

|A|
ReA

, (22)

which means:

for a real A, ∆x×∆k =
1

2
,

but for a complex A, ∆x×∆k >
1

2
.
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