Maxwell-Ampere Law

The original Ampere Law

VxH = Jfree, (1)
%H dl = 17 [through loop L] (2)
L

applies to the magnetic fields of steady currents, but it does not work for the time-dependent

currents J(¢) with V-J # 0. Indeed, consider an AC current (t) flowing through a capacitor
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Of course, the current does not really flow through the capacitor but only through the wires
connected to each of the capacitor’s plates. Inside the capacitor, there is no electric current;
instead, the charges temporarily accumulate on the plates according to
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Now, let’s try to apply the Ampere Law (2) to the loop £ on the diagram (3). The current
through L is defined as the net current through any surface spanning the loop, but for a non-
steady current different surfaces may give different answers. For example, the net current
through the surface & — which crosses one of the wires connected to the capacitor — is

the AC current I(t) in the wire, while the net current through the surface So — which goes



between the two plates — is zero. So what should we use on the RHS of eq. (2)? I(t)? Zero?

Something else?

In 1861, James Clerk Maxwell resolved this issue by adding the displacement current
Jile.v.50) = 5Dy 1) 6)
to the conduction current J. in the Ampere Law:
VxH = J. + J,. (6)
The D(z,y, 2;t) in eq. (5) is the electric displacement field
D = E + P, (7)

so the displacement current (5) involves the time derivatives of both the electric field E and

of the dielectric polarization P,
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Jd:€0§+§, (8)

except in a vacuum where only the first term is present.

The divergences of the conduction current J. and the displacement current J; always

cancel each other,

Vo Je(z,y, zt) + V-Jg(x,y,2t) = 0, 9)

and that’s what makes the Mazwell-Ampere equation (6) mathematically consistent. Like-

%H-dfz//(Jc+Jd)-d2a (10)
L S

for any surface S spanning the Ampere loop L.

wise, in the global form



The divergence cancellation (9) stems from the continuity equation for the conduction

current and the free charges,

Vo dilrt) = 2 gyl (11)

and the Gauss Law for the electric displacement field,
VD(rat) - pf(rvt)a (12)

— which works without any modifications for the time-dependent fields and charges. Taking

the time derivative of both sides of the Gauss Law equation (12), we obtain

0 0 B oD(r,t)
hence in light of the continuity equation (11),
V-Je(r,t) = =V - Jy(r,t). (14)

Therefore, regardless of how the currents and the charges change with time and place, the
combined conduction + displacement current J. + Jg4 always has zero divergence, and that’s
what makes the Maxwell-Ampere Law (6) mathematically consistent. And indeed, the

Maxwell-Ampere Law (6) happens to work for any time-dependent fields and currents.

For an example of the displacement current, consider a parallel-plate capacitor (such as
shown on diagram (3)), perhaps with a uniform dielectric between the plates. The displace-
ment field between the plates is uniform (except near the edges of the plates), and its value

follows from the plate charges +(@) via the Gauss Law,

Q 3

= — 7. 15
plate area A z (15)

Consequently, when the capacitor’s charge (Q(t) is time-dependent due to the conduction

current /.(t) in the wires connected to the capacitor, the displacement field (15) inside the



capacitor becomes time-dependent, which gives rise to the displacement current

dQ 2

Jd:%A

(16)

This displacement current density flows only between the plates, so the net displacement

current through the capacitor is

dQ
Ig = J;-(Az) = — 17
¢ = Ja-(42) = °F, (1)
which is exactly equal to the conduction current I.(t) in the wires,
d
L) = % = 1y, (18)

Physically, this means that the combined conduction + displacement current I(t) = I.(t) +
1;(t) flows without interruption through the wires and through the capacitor. It is this un-
interrupted net current I1(t) which gives rise to the magnetic field surrounding the capacitor

and the wires.

Maxwell Equations

And God said,

VD = ppee, (19.a)
0B
VxE = —— 19.b
. Ly (1)
VB =0, (19.)
oD
VxH = JfrCO —+ E, (19d)

and there was light.

The four equations (19.a—d) governing the macroscopic electric and magnetic fields are
usually called the Mazwell equations. Historically, 3% of these equations were known before
James Clerk Maxwell, but he was the first physicist to put them together and discover
that they lead to the electromagnetic waves. In particular, he realized that Light is an

electromagnetic wave, hence the biblical quote above.



Actually, Maxwell’s 1865 article [A_Dynamical Theory of the Electromagnetic Field had

about 20 equations, and his 1873 two-volume book |A Treatise on Electricity and Magnetismi

had even more. Part of this proliferation was due to not using the vector notations — they
were invented a few years after Maxwell’s death, so he had to write the vector equations in
components. Also, the paper and the book included some extra equations such as the Ohm’s
law J = oE, the linear dielectric equation D = eegE, etc., etc. In any case, Maxwell’s Treatise
contained some tremendously important ideas, but it was poorly organised and very hard
to read. It took Oliver Heaviside, Josiah Willard Gibbs, and Heinrich Hertz to eventually
(18847) make Maxwell’'s work accessible to an average physicist. In fact, it were Hertz and
Heaviside who had grouped equations (19.a—d) together, wrote them in the modern form,

and called them the Maxwell’s equations.

In the integral form, the Maxwell equations (19.a—d) become

ﬂ D-d’a = Qgeelinside S, (20)

#B~d2a =0, (21)
fE-dZ——i//B-an (22)
o dt ’
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, d
fﬂw — //Jcond~d2a + E//D-dza, (23)
L S Sc

where § is any closed surface, £ is any closed loop, and Sy is any surface spanning the loop
L. These integral equations give rise to the boundary conditions for the fields at a boundary
between two dielectric and/or magnetic media. In particular, using a brick-shaped Gaussian
surface S in egs. (20) and (21) — half the brick in one medium, half the brick in the other

— we obtain

Dg_l) - Df) = Ofree (24)
B — BY = 0. (25)

We have seen these equations before for the static D and B fields, but now we know they

apply without changes to the time-dependent fields.


https://en.wikipedia.org/wiki/A_Dynamical_Theory_of_the_Electromagnetic_Field
https://en.wikipedia.org/wiki/A_Treatise_on_Electricity_and_Magnetism

The other boundary conditions follow from egs. (22) and (23) for a narrow rectangular
Ampere loop Az x Az, with small Az and much smaller Az < Az. In the Az — 0 limit,
eq. (22) becomes

Ax- (EW-E®) = 0 (26)

since the magnetic flux through the loop vanishes with loop’s area as Az — 0. Consequently,

for static or dynamical electric fields.

B - B =0 (27)
Likewise, in eq. (23) for the same Ampere loop, the D flux through the loop vanishes in
the Az — 0 limit, while the net free current through the loop is reduced to the surface
conduction current only, hence

Hﬁl) _ Hﬁ2) — Kegpq X 1 (28)

where n is the unit vector L to the boundary.

The boundary conditions (24), (25), (27), and (28) are the basis of the theory of reflection
and refraction of the electromagnetic waves at boundaries of transparent materials. But that
subject will have to wait until the second semester of the Classical Electrodynamics class

(PHY 352 L).

As written, the Maxwell equations (19.a—d) govern the macroscopic electric and magnetic
fields E,D,B, H in dielectric/magnetic matter. Microscopically, there are only E and B

fields, and the Maxwell equations governing them are

1

V-E = —p, (29.a)
€0
0B
V-B =0, (29.c)
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Electromagnetic Waves

The most revolutionary aspect of the Maxwell equations (29.a-d) or (19.a—d) is that they
allow for the electromagnetic waves propagating in the absence of any charges or currents. Or
rather, it might take some time-dependent charges or currents to create an electromagnetic
wave in the first place; but once created, the wave keeps propagating further and further

away without any additional charges or currents.

To see how this works, consider the Maxwell equations in a vacuum, in a total absence

of any charges and currents:

V-E = 0,
VB = 0,
VxE:—a—B, (30)
ot
OE
VxB = MQGOE.

The last two equations here are coupled first-order differential equations for the electric and

magnetic fields. We can decouple these equations by applying an extra curl:

0B 0 0 OE
VX(VXE) = V x (—E) = —E(VXB) = —a (MOEOE)

82

= —Hoco 55 B, (31)

OE 0 0 0B
V x (V X B) = VX (NOEO E) = HM0€0 E(V X E) = MOEOE <_E)

82
= —MO€0 @ B. (32)

At the same time, a double curl of a vector field V is related to its Laplacian according to
Vx(VxV) =V(V-V) - V?V. (33)

In particular, for the electric and magnetic fields which have zero divergences (in the vacuum),

we have

Vx(VxE) = -V’E, Vx(VxB) = -V’B. (34)



Consequently, the decoupled second-order equations (31) and (32) become

62
VQE('Ia Y, =, t) = +Ho€o @ E(:Ea Y,z t))

o2 (35)
V2B(z,y,2,t) = +puoeo @B(:c,y,z,t).

Physically, this means that each component E,, £, E., B;, By, B, of the electric or magnetic

field in the vacuum obeys the wave equation

< 1 92 9 0? 0

kil v i 822> Field(z,y, z,t) = 0, (36)

with wave speed

1 1
— = — = = ¢ = 299792458 . 37
" HO€Q v — c m/s (37)

Back in Maxwell’s time, the measurements of speed of light in the vacuum were a few
percent off, about 3.15-10% m/s. The Coulomb constant 1/(4me) was also a few percent off,
so plugging it into eq. (37), Maxwell got v ~ 3.11 - 108 m/s. The sheer coincidence between
the experimental speed of light in the vacuum and the theoretical speed of the EM waves
(also in the vacuum) immediately suggested to Maxwell that light is an electromagnetic
wave. Later, with better measurements, both speeds were corrected by a few percent, but

the Maxwell’s conclusion stands: the light is an electromagnetic wave.

Let me conclude these notes with the speed of light in a linear dielectric/magnetic

medium. In the absence of free charges or currents, the macroscopic Maxwell equations

(19.a-d) become

V- E = LV-D = 0,
€€p
V-B =0,
38
VxE:—a—B, (38)
ot
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Consequently;,

V2E

and likewise

V(V-E) — Vx (VxE)

0
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= -V x(VxE)

0
XB) = ‘|‘&<

VB = V(V-B) — Vx(VxB) = -V x (V xB)
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Thus, each component of the electric or magnetic field obeys the wave equation

for wave speed

(

1 02 H?

d? 9

V2 Ot2 0a?

o2 022

)Field(az,y,z,t) = 0,
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