
ELECTROMAGNETIC WAVES

Wave Equation and Plane Waves

In one space dimension, the wave equation has general form

(

∂2

∂x2
− 1

v2
∂2

∂t2

)

Ψ(x, t) = 0, (1)

where Ψ(x, t) is some kind of quantity that happens to obey this equation: a displacement

of a stretched string, a current in a cable, whatever. . . The most general solution of the

1D wave equation is a superposition of a pulse — of any profile — traveling to the right at

speed v and another pulse traveling to the left at the same speed, thus

Ψ(x, t) = f1(x− vt) + f2(x+ vt) (2)

for any two functions f1 and f2 of a single argument. Of particular importance are the

harmonic (AKA monochromatic) waves

Ψ(x, t) = Re
(

A1 × exp(ikx− iωt)
)

+ Re
(

A2 × exp(−ikx− iωt)
)

, (3)

where ω = 2πf is the (angular) frequency and

k =
2π

wavelength
=

ω

v
(4)

is the wave number.

In three space dimensions, the wave equation becomes

(

∇2 − 1

v2
∂2

∂t2

)

Ψ(x, y, z; t) = 0, (5)

or in components

∂2Ψ

∂x2
+

∂2Ψ

∂y2
+

∂2Ψ

∂z2
− 1

v2
∂2Ψ

∂t2
= 0. (6)

Unlike the 1D wave equation (1), the 3D wave equation does not have a simple general

solution like (2); instead, we have a wide variety of solutions, much wider than in 1D.
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However, the particularly important solutions — the harmonic plane waves — have rather

simple form

Ψ(r, t) = Re
(

A exp(ik · r − iωt)
)

(7)

where k is the wave vector of magnitude |k| = ω/v and any direction we like. Such waves

are called plane waves because the wave fronts — the surfaces of constant phase

phase = k · r − ωt + arg(A) = const (8)

— are planes ⊥ to the wave vector k. Also, these wave fronts happen to move in the direction

of k at the wave speed v, as illustrated at this page.

It is easy to verify that the harmonic plane wave (7) obey the 3D wave equation (5) as

long as

|k| =
ω

v
⇐⇒ k2 =

ω2

v2
. (9)

Indeed, the space and time derivatives act on the

exp(ik · r − iωt) = exp(ikxx+ ikyy + ikzz − iωt), (10)

by multiplying it by +i× component of k or −iω,

∇j exp(ik · r − iωt) = ikj exp(ik · r − iωt), (11)

∂

∂t
exp(ik · r − iωt) = −iω ∗ exp(ik · r − iωt), (12)

hence

∇2 exp(ik · r − iωt) = −k2 ∗ exp(ik · r − iωt), (13)

∂2

∂t2
exp(ik · r − iωt) = −ω2 ∗ exp(ik · r − iωt), (14)

and therefore
(

∇2 − 1

v2
∂2

∂t2

)

exp(ik · r − iωt) =

(

−k2 +
ω2

v2

)

∗ exp(ik · r − iωt)

= 0 for k2 =
ω2

v2
.

(15)
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Electromagnetic Wave Equation

For simplicity, let’s focus on the electromagnetic fields in the vacuum or in a linear,

isotropic, and uniform medium where

D(r, t) = ǫǫ0E(r, t), B(r, t) = µµ0H(r, t), (16)

for constant ǫ and µ. In the absence of any free charges or conduction currents, the Maxwell

equations for the EM fields become

∇ · E = 0, (M1)

∇ ·B = 0, (M2)

∇× E = −∂B

∂t
, (M3)

∇×B = +
1

v2
∂E

∂t
, (M4)

where
1

v2
def
= µµ0ǫǫ0 ; (17)

this specific coefficient in eq. (M4) comes from

∇×B = µµ0∇×H = µµ0

(

J+
∂D

∂t
= 0+ ǫǫ0

∂E

∂t

)

= µµ0ǫǫ0
∂E

∂t
. (18)

Equations (M3) and (M4) are coupled first-order differential equations for the electric and

magnetic fields. We can decouple these equations by applying an extra curl:

∇× (∇× E) = ∇×
(

−∂B

∂t

)

= − ∂

∂t

(

∇×B) = − ∂

∂t

(

1

v2
∂E

∂t

)

= − 1

v2
∂2E

∂t2
, (19)

∇× (∇×B) = ∇×
(

1

v2
∂E

∂t

)

=
1

v2
∂

∂t

(

∇× E) =
1

v2
∂

∂t

(

−∂B

∂t

)

= − 1

v2
∂2B

∂t2
. (20)

At the same time, a double curl of a vector field V is related to its Laplacian according to

∇× (∇×V) = ∇(∇ ·V) − ∇2V. (21)

In particular, for the electric and magnetic fields which have zero divergences according to

3



eqs. (M1–2), we have

∇× (∇× E) = −∇2E, ∇× (∇×B) = −∇2B. (22)

Consequently, the decoupled second-order equations (19) and (20) become

∇2E(x, y, z, t) = +
1

v2
∂2

∂t2
E(x, y, z, t),

∇2B(x, y, z, t) = +
1

v2
∂2

∂t2
B(x, y, z, t).

(23)

In other words, every component Ex, Ey, Ez, Bx, By, Bz of the electric or magnetic field obeys

the wave equation
(

∇2 − 1

v2
∂2

∂t2

)

component(x, y, z, t) = 0 (24)

with the wave speed

v =
1√

µµ0ǫǫ0
. (25)

In particular, in the vacuum this speed of EM waves is

vvac =
1√
ǫ0µ0

= light speed c = 299 792 458 m/s. (26)

Back in Maxwell’s time, the measurements of speed of light in the vacuum were a few

percent off, about 3.15 ·108 m/s. The Coulomb constant 1/(4πǫ0) was also a few percent off,

so plugging it into eq. (26), Maxwell got v ≈ 3.11 · 108 m/s. The sheer coincidence between

the experimental speed of light in the vacuum and the theoretical speed of the EM waves

(also in the vacuum) immediately suggested to Maxwell that light is an electromagnetic

wave. Later, with better measurements, both speeds were corrected by a few percent, but

the Maxwell’s conclusion stands: the light is an electromagnetic wave.

In a non-vacuum transparent medium, the light is also an EM wave but moving at a

lesser speed

v =
c√
µǫ

=
c

n
(27)

where n =
√
µǫ is the index of refraction of the medium at hand. The refraction here refers

to the bending of light rays as they cross from one transparent medium into another; the
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degree of such bending depends on the refraction indices n1 and n2 of the two media, hence

the name ‘refraction index’.

Although Maxwell’s identification of light as a kind of EM wave was rather persuasive

(as there were a lot more similarities than just the speed of the wave), the ultimate proof

of Maxwell’s theory required a different kind of an EM wave that could be generated by

an oscillating electric current and detected by some equipment specifically sensitive to the

oscillating electric field. In 1886, Heinrich Rudolf Hertz did experimentally generate and

detect such EM waves; they were called the Hertzian waves for a couple of decades but

eventually got renamed the radio waves.

Since then, may other kinds of EM waves were discovered, or rather identified as EM

waves: the microwaves, the infrared and the ultraviolet light-like waves, the X-rays, and the

gamma-rays. All of these rays are electromagnetic waves, but of very different frequencies.

This Wikipedia article gives a basic overview of the electromagnetic spectrum.

Plane Electromagnetic Waves

In a harmonic plane electromagnetic wave, both the electric and the magnetic fields have

the same frequency ω and the same wave vector k, thus

E(r, t) = Re
(

~E exp(ik · r − iωt)
)

,

B(r, t) = Re
(

~B exp(ik · r − iωt)
)

,
(28)

for some complex amplitude vectors ~E and ~B. To obey the wave equation

(

∇2 − 1

v2
∂2

∂t2

)

(

E(r, t)

B(r, t)

)

= 0 (29)

for the EM waves in vacuum, we need

k2 − ω2

v2
= 0 =⇒ k =

ω

v
k̂ (30)

for some unit vector k̂.
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However, there is more to the Maxwell equations for the EM fields than just the wave

equation (29), and this leads to several constraints on the 6 component amplitudes Ex,y,z
and Bx,y,z. Let’s start with the Gauss Law constraints

∇ · E = 0 and ∇ ·B = 0. (31)

When acting on exp(ik · r− iωt), the ∇ acts by multiplying by ik,

∇ exp(ik · r− iωt) = ik exp(ik · r− iωt), (32)

hence

∇ · E = ∇ ·
(

~E exp(ik · r− iωt)
)

= i(k · ~E) exp(ik · r− iωt) (33)

and likewise

∇ ·B = ∇ ·
(

~B exp(ik · r− iωt)
)

= i(k · ~B) exp(ik · r− iωt). (34)

Thus, to satisfy the Gauss Law constraints (31), the amplitude vectors must obey

k · ~E = 0 and k · ~B = 0. (35)

In other words, both the electric and the magnetic amplitude vectors must be ⊥ to the wave

direction k̂. Consequently, at every place r and every time t, the E and B fields of an EM

wave are transverse to the wave’s direction; that’s why we say that the electromagnetic waves

are transverse waves.

Next, the time-dependent equations

∇× E = −∂B

∂t
, ∇×B = +

1

v2
∂E

∂t
. (36)

Again, when acting on exp(ik · r− iωt), the ∇ acts by multiplying by ik while ∂/∂t acts by

multiplying by −iω. Thus,

∇× E = i(k× ~E) exp(ik · r− iωt), (37)
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∇×B = i(k× ~B) exp(ik · r− iωt), (38)

∂

∂t
E = −iω~E exp(ik · r− iωt), (39)

∂

∂t
B = −iω ~B exp(ik · r− iωt), (40)

so eqs. (36) become

ik× ~E = +iω ~B, ik× ~B = −iω

v2
~E . (41)

These two linear equations become consistent with each other for k = (ω/v)k̂ where k̂ is a

unit vector in the direction of the wave’s propagation. Indeed, plugging this k into eqs. (41)

and dividing both sides of each equation bu iω, we get

k̂× ~E = v ~B, k̂× ~B = −1

v
~E , (42)

and these two equations are equivalent for ~E and ~B that are ⊥ k̂. Indeed:

k̂× ~B = −1

v
~E =⇒ ~E = −vk̂× ~B =⇒

=⇒ k̂× ~E = −vk̂× (k̂× ~B) = −v(k̂ · ~B)k̂ + c ~B = 0 + v ~B 〈〈 because ~B ⊥ k̂ 〉〉,
(43)

and likewise

k̂× ~E = v ~B =⇒ ~B =
1

v
k̂× ~E =⇒

=⇒ k̂× ~B =
1

v
k̂× (k̂× ~E) =

1

v
(k̂ · ~E)k̂ − 1

v
~E = 0 − 1

v
~E 〈〈 because ~E ⊥ k̂ 〉〉.

(44)

Thus, according to either equation, the magnitudes of the electric and the magnetic ampli-

tudes are related as

| ~B| =
1

v
|~E| , (45)

while their directions in the plane ⊥ k̂ differ by 90◦.
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Moreover, eqs. (42) relating the electric and the magnetic amplitudes have no phase

factors other than the ± signs. Consequently,

vB(r, t) = Re
(

v ~B exp(ik · r− iωt)
)

= Re
(

(k̂× ~E) exp(ik · r− iωt)
)

= k̂× Re
(

~E exp(ik · r− iωt)
)

= k̂×E(r, t),
(46)

which means that at any particular place r and at any particular time t, the electric and the

magnetic fields of a plane harmonic wave are related as

B(r, t) =
1

v
k̂× E(r, t). (47)

Both fields are transverse to the wave direction k̂ and also ⊥ to each other! Specifically:

• If you look at the wave such that it comes into your eye (the Optics convention), then

the magnetic field points 90◦ to the left from the electric field.

• But if you look at the wave from the direction of its source so that k̂ points away from

you (the particle physics convention), then the magnetic field points 90◦ to the right

of the electric field.

⋆ this web page has a 3D illustration of these directions.

In term of the magnetic strength field H rather than the induction field B, eq. (47)

becomes

H(r, t) =
1

Z
k̂× E(r, t) (48)

where

Z = µµ0v =

√

µµ0
ǫǫ0

(49)

is the wave impedance of the medium at hand. In particular, the vacuum has wave impedance

of the free space

Z0 = µ0c =

√

µ0
ǫ0

=
1

ǫ0c
≈ 377 Ω. (50)
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For a non-vacuum medium, the wave impedance is

Z =

√

µ

ǫ
× Z0 =

µ

n
× Z0 (51)

(where n =
√
µǫ is the refraction index), and since most transparent media are non-magnetic,

we may approximate µ ≈ 1, n ≈ √
ǫ, and

Z ≈ Z0

n
. (52)

We shall use this approximation in by next set of notes about refraction and reflection of

EM waves.

Energy and Momentum of Plane EM Waves

The energy density of the EM fields in a linear medium is

u = 1
2E ·D + 1

2H ·B =
ǫǫ0
2

E2 +
µµ0
2

H2, (53)

and in a plane wave where the electric and the magnetic fields are transverse (E ⊥ k̂ and

H ⊥ k̂) and related to each other as

ZH(r, t) = k̂× E(r, t), (54)

the electric and the magnetic terms in eq. (53) are equal to each other. Indeed, for E ⊥ k̂

H2 =
1

Z2
(k̂×E)2 =

ǫǫ0
µµ0

E2, (55)

hence

umag =
µµ0
2

H2 =
ǫǫ0
2

E2 = uel , (56)

and therefore

unet = 1
2 ǫǫ0E

2. (57)

For a harmonic plane wave

E(r, t) = Re
(

~E exp(ik · r − iωt)
)

, (58)

it’s convenient to re-express the wave’s energy density (57) in terms of the electric ampli-
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tude ~E . Earlier in class — cf. my notes — we saw that for a harmonic AC current and

voltage

I(t) = Re
(

I0e
−iωt

)

, V (t) = Re
(

V0e
−iωt

)

, (59)

the time-averaged electric power is

〈P 〉 = 〈IV 〉 = 1
2 Re(I

∗

0V0) = 1
2 Re(I0V

∗

0 ). (60)

Likewise, in a harmonic plane wave (58) we have

time-averaged
〈

E2
〉

= 1
2 Re

(

~E∗ · ~E
)

= 1
2

∣

∣

∣

~E
∣

∣

∣

2

, (61)

hence time-averaged energy density (57) of the wave is

〈u〉 =
ǫǫ0
2

∣

∣

∣

~E
∣

∣

∣

2

. (62)

Next, the energy flow density of the plane wave, which obtains from the Poynting vector

S = E×H. (63)

For the harmonically oscillating electric and magnetic fields, the time-average of this Poynt-

ing vector is related to the electric and magnetic amplitudes as

〈S〉 = 1
2 Re

(

~E∗ × ~H
)

, (64)

where in light of eq. (54) the magnetic amplitude ~H follows from the electric amplitude ~E as

~H =
1

Z
k̂× ~E . (65)

Consequently,

~E∗ × ~H =
1

Z
~E∗ × (k̂× ~E) =

1

Z

(

k̂
(

~E∗ · ~E
)

− ~E
(

~E∗ · k̂
)

)

=
1

Z

(

k̂

∣

∣

∣

~E
∣

∣

∣

2

− 0
)

, (66)

where the last equality follows from (~E∗ · k̂) = (~E · k̂)∗ = 0. Consequently, the time-averaged
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energy flow density of the plane EM wave is

〈S〉 =
|~E|2
2Z

k̂. (67)

Taking the ratio of this energy flow density to the energy density (62), we get

|〈S〉|
〈u〉 =

|~E|2/2Z
(ǫǫ0/2)|~E|2

=
1

Zǫǫ0
=

1√
ǫǫ0 µµ0

= vwave , (68)

and therefore

〈S〉 = 〈u〉 vwave . (69)

In other words, the energy of the plane EM wave moves in space with exactly the same

velocity vector vwave = vk̂ as the phase fronts, i.e. the planes of constant phase, k · r−ωt =

const.

A point of terminology: the intensity of an EM wave is the (time-averaged) power it

transmits per unit of cross-sectional area. In terms of the (time-averaged) Poynting vec-

tor 〈S〉,

I = 〈S〉 · k̂ = |〈S〉| , (70)

hence

I =
|~E|2
2Z

while 〈u〉 =
I

v
=

nI

c
. (71)

Finally, consider the momentum density of the EM wave,

g = D×B = ǫǫ0µµ0 S =
1

v2
S =

n2

c2
S . (72)

After time-averaging over the wave’s period, this momentum density becomes

〈g〉 =
n2

c2
〈S〉 =

n2

c2
Ik̂. (73)

Like any EM momentum, the wave’s momentum can be transferred to a mechanical momen-

tum of some body which absorbs or reflects the EM wave, thus exerting a radiation pressure
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on that body. For an example, consider a plane EM wave in the vacuum traveling in +x̂

and hitting a perfect absorber at some location x0. Look at the fields in the volume between

x1 = x0−c∆t and x2 = x0 in the x direction and of the same cross-section A as the absorber

in the (y, z) directions.

xx0x0 − c∆t

A (74)

During time ∆t, the fields initially located in this volume would travel to the absorber and

disappear, while the net momentum of these fields

pnet = volume ∗ g = Ac∆t ∗ Ix̂

c2
(75)

would be transferred to the absorber. This momentum transfer amounts to the radiation

force

F =
pnet

∆t
= A ∗ Ix̂

c
, (76)

and since this force is proportional to the cross–sectional area A, there is the radiation

pressure

P =
Fx

A
=

I

c
. (77)

Note: this is a light pressure on a perfect absorber. The pressure on the perfect reflector

is twice that, P = 2(I/c), but only if the light hits the reflector head-on and reflected back

where it came from. Indeed, in this set up, during the time ∆t the radiation in the yellow

volume A× c∆t on the diagram (74) woupld be reflected back rather than absorbed, so its

momentum would reverse its direction. Consequently

∆prad = −2 ∗ volume ∗ g = −2Ac∆t ∗ Ix̂

c2
, (78)

hence

∆preflector = −∆prad = +2A∆t
I

c
x̂, (79)
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so the net radiation force on the reflector is

F =
δp

∆t
= 2A

I

c
x̂ (80)

and the pressure is

P =
Fx

A
= 2

I

c
. (81)

Historically, the light pressure was predicted by Maxwell in 1862 and experimentally

discovered by Pyotr Lebedev in 1900. This was a hard experiment for the times, and could

only be done in a very good vacuum to avoid gas pressure disturbances on the absorber

being heated by the light it absorbs. Several physicists tried to measure the light pressure

before Lebedev, and they all had problem with gas pressure effects in a poor vacuum that

were much bigger than the radiation pressure they were tried to measure.

Polarizations of EM Waves

Both electric and magnetic fields of a plane EM wave are linearly related to the electric

amplitude vector ~E , which is a complex vector in the 2D plane ⊥ to the wave direction k̂.

Hence, all superpositions of waves with the same frequency ω and wave vector k follow from

the superpositions

~Enet = α1
~E1 + α2

~E2 (82)

of such 2D complex vectors. In this section, we shall see how it works, and how to decompose

a general amplitude vector ~E into two independent wave polarizations. But to simplify our

notations, let’s focus on the waves traveling in the positive z direction, k̂ = (0, 0,+1).

Consequently, the amplitude vectors of all such waves have form

~E = (Ex, Ey, 0) (83)

with 2 independent complex components Ex and Ey. Depending on the relative phases — and

also relative magnitudes — of these two components, an EM wave can be linearly polarized,

circularly polarized, or elliptically polarized.
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Linear polarizations

Linear polarizations (AKA planar polarizations) of the EM waves obtain when the com-

plex amplitudes Ex and Ey have the same phase (up to a sign). In general, the linearly

polarized waves have

Ex = E0 × cosφ, Ey = E0 × sinφ (84)

for some real angle φ, so when the electric field oscillates in time and space,

E(z, t) = Re
(

~E eikz−iωt
)

, (85)

we get

E(z, t) = (cosφ, sinφ, 0) ∗ Re
(

E0 eikz−iωt
)

= |E0| ∗ (cosφ, sinφ, 0) ∗ cos(kz − ωt+ δ)

where δ = arg(E0).

(86)

Thus, in a linearly polarized wave, the electric field always points in the same direction

(cosφ, sinφ, 0) (modulo the overall sign), namely along the line in the (x, y) plane making

angle φ with the x axis,

x

y

direction of E

φ
(87)

That’s why such polarizations are called linear. The same polarizations are called planar

after the shape of the 3D plot of the electric wave E(z) (for any fixed time t): Such a plot is

restricted to a single 2D plane, spanning the z axis and the red line on the above diagram,

for example this plot.
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As to the magnetic field of a linearly polarized EM wave,

~H =
1

Z
k̂× ~E =

E0
Z

(0, 0, 1)× (cosφ, sinφ, 0) =
E0
Z

(− sinφ,+cosφ, 0), (88)

hence

H(z, t) =
|E0|
Z

∗ (sinφ,+cosφ, 0) ∗ cos(kz − ωt+ δ). (89)

In other words, the magnetic fields oscillates with the same phase as the electric field, but

its direction is rotated 90◦ counterclockwise (in the (x, y) plane) from the electric field’s

direction. Here are snapshots of the electric and the magnetic fields at two instances of time:

x

y

E(t1)
H(t1)

x

y

E(t2)
H(t2)

(90)

Note: on this diagram, the +z direction of the wave is towards your face, that’s why the

magnetic field points 90◦ to the left the electric field. If you were looking at the field from

the opposite direction of the wave’s source, the magnetic field would point 90◦ to the right

of the electric field. This web page has an animated 3D diagram that clarifies the relative

directions of the two fields.

Circular polarizations

In a circularly polarized wave, the complex amplitudes Ex and Ey have similar magnitudes

but their phases differ by 90◦, Ey = ±iEx and hence

~E =
E0√
2
(1,±i, 0). (91)

Consequently, the x and the y components of the electric field E(z, t) oscillate with phases
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differing by 90◦:

Ex(z, t) =
|E0|√
2
× cos(kz − ωt+ δ), (92)

Ey(z, t) =
|E0|√
2
× cos

(

kz − ωt+ δ ± π
2

)

= ∓|E0|√
2
× sin(kz − ωt+ δ). (93)

Thus, the electric field E keeps constant magnitude |E| = |E0|/
√
2, but its direction moves

in a circle in the (x, y) plane,

direction(E) = ±(ωt− kz − δ). (94)

Here is a 3D animated illustration from wikipedia.

The two circular polarizations — one with ~E+ ∝ (1,+i, 0) and the other with ~E− ∝
(1,−i, 0) — correspond to the two opposite direction of the E field’s rotation. But which

direction of rotation we call ‘right’ and which we call ‘left’ depends on a convention:

• In both conventions, we look at the electric field vector E(t) as a function of time at

a fixed location r.

• In the Optics convention, we look at the incoming wave — the unit wave vector k̂

points into your eye.

• But in the Particle Physics convention, we look at the outgoing wave, with the k̂ vector

pointing away from you.

⋆ Consequently, the same physical direction of rotation that appears clockwise (right) in

one convention would appear counterclockwise (left) in the other convention, and vice

verse.

In particular, for the wave traveling in the +z direction, looking at the (x, y) plane drawn

on a horizontal piece of paper from above corresponds to the Optics convention: the wave

travels up, towards your eyes. In this convention, the positive direction of angles in the

(x, y) plane is counterclockwise (left), while eq. (94) tells us that the direction of E moves
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in the positive direction for ~E+ ∝ (1,+i, 0) and in the negative direction for ~E− ∝ (1,−i, 0).

Consequently,

In the Optical convention:

~E+ ∝ (1,+i, 0) is the left circular polarization,

~E− ∝ (1,−i, 0) is the right circular polarization.

(95)

And of course,

In the Particle Physics convention, it’s the other way around:

~E+ ∝ (1,+i, 0) is the right circular polarization,

~E− ∝ (1,−i, 0) is the left circular polarization.

(96)

The reason for this particular convention in the particle physics is that a circularly polarized

plane EM wave corresponds to a beam of photons of definite helicity

λ
def
= k̂ · Spin (in units of h̄). (97)

For a photon, the two allowed values of its helicity are +1 and −1 (but not 0), and its

convenient to call a photon with λ = +1 as polarized right while a photon with λ = −1 as

polarized left.

Altogether, we have the following correspondence table for the circular polarizations:

λ Particle Optics Equation for ~E

+1 right left ik̂× ~E+ = +~E+

−1 left right ik̂× ~E− = −~E−

The last column here helps to write down the electric amplitudes ~E for the 2 circular po-

larizations for a general direction k̂ of the plane wave: The two ~E ’s are eigenvectors of a

Hermitian linear operator ~E → ik̂× ~E for its two non-zero eigenvalues λ = ±1. In particular,
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for k̂ = (0, 0, 1), the eigenvector equation becomes

i(0, 0, 1)× (Ex, Ey, Ez) = (−iEy,+iEx, 0) = ±(Ex, Ey, Ez) (98)

whose eigenvectors are indeed

~E± =
E0√
2
(1,±i, 0). (99)

Elliptic polarizations

For generic Ex and Ey amplitudes of a plane wave — two complex numbers of different

magnitudes and different phases, — the E(t) vector moves along an ellipse in the (x, y) plane,

so such polarizations are called elliptic. For example, consider

~E =
E0√
2− r2

(

1,±i
√

1− r2, 0
)

(100)

and hence

Ex(z, t) =
|E0|√
2− r2

× cos(ωt− kz − δ),

Ey(z, t) = ±
√

1− r2 × |E0|√
2− r2

× sin(ωt− kz − δ).

(101)

As a function of time (at a fixed z), the electric field vector with these components indeed

follows an ellipse of eccentricity r in the (x, y) plane:

x

y

E

(102)

For this particular ellipse, its major axis is along the x axis while the minor axis is along the
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y axis, but one may easily generalize this example to any other axis direction by taking

~E =
|E0|√
2− r2

∗
(

(cos φ, sinφ, 0) ± i
√

1− r2 ∗ (− sin φ,+cosφ, 0)
)

. (103)

Indeed, any complex 2D vector ~E = (Ex, Ey, 0) can be written in the form (103) for some

overall complex amplitude E0, a real angle φ, and a real eccentricity r between 0 and 1. For

r = 1 we get a linear polarization in the direction φ, for r = 0 we get a circular polarization,

and for any other 0 < r < 1 we get an elliptic polarization.

Polarization bases

Consider superpositions of two (or several) EM waves of the same frequency ω traveling

in the same direction k̂ (and hence having the same wave vector k = (ω/v)k̂). Since EM

fields of a plane wave depend linearly on the electric amplitude vector ~E , superposition of

all fields follow from superposition of these amplitude vectors:

IF ~Enet = α1
~E1 + α2

~E2
THEN Enet(r, t) = α1E1(r, t) + α2E2(r, t)

AND Hnet(r, t) = α1H1(r, t) + α2H2(r, t).

(104)

So let’s take a closer look at the linear space of the amplitude vectors ~E .

For a given direction k̂ of the plane waves, their electric amplitudes ~E are complex two-

dimensional vectors in the plane ⊥ k̂. Consequently, there are two independent polarizations

e1 and e2, and all the amplitudes are linear combination of these polarizations,

any ~E = α1e1 + α2e2 for some complex α1 and α2 . (105)

For example, for a wave traveling in the +z direction, we may use

ex = (1, 0, 0), ey = (0, 1, 0) ~E = (Ex, Ey, 0) = Exex + Eyey . (106)

However, there are infinitely many other bases of a complex 2D vector space. Indeed, take

any 2 complex unit vectors that are ⊥ k̂ and ⊥ to each other, and they would form a basis:

IF e∗1 · e1 = e∗2 · e2 = 1 AND k̂ · e1 = k̂ · e2 = e∗1 · e2 = 0
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THEN for any ~E ⊥ k̂ : ~E = α1e1 + α2e2

where α1 = e∗1 · ~E and α2 = e∗2 · ~E . (107)

In particular, any pair of real unit vectors e1 ⊥ e2 (in the plane ⊥ k̂) forms a basis of linear

polarizations. Indeed, a plane wave with amplitude α1e1 for a real vector e1 is linearly

polarized, and so is the wave with amplitude α2e2, but their superposition may have any

polarization we like, linear, circular, or elliptic, depending on the complex coefficients α1 and

α2. Earlier in these notes, we have seen how this works in the ex, ey basis (for wave moving

in the z+ direction), but it would work in exactly the same way for any other pair of linear

polarizations ⊥ to each other. For example, for the same wave direction we may use a basis

of (ex′, ey′) for some coordinate axes (x′, y′) rotated through some angle relative to (x, y):

x

y

x′y′

ex

ey ex′

ey′

any ~E = Exex + Eyey
= Ex′ex′ + Ey′ey′ .

(108)

The 2 circular polarizations

e+ =
1√
2
(1,+i, 0), e− =

1√
2
(1,−i, 0), (109)

also form a basis of all polarizations. For example, any linear polarization is a superposition

of the two circular polarizations as

~E = E0(cosφ, sinφ, 0) =
E0√
2
e−iφe+ +

E0√
2
e+iφe− , (110)

— note coefficients of equal magnitudes but different phases, — while for any elliptic polar-

ization one generally has

~E = (e∗+ · ~E)e+ + (e∗− · ~E)e− (111)

where the two coefficient generally have both different magnitudes and different phases.
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In principle, one may also use a pair of elliptic polarizations as a basis, but this is rarely

done. In practice, one chooses a basis according to the available filters selecting a particular

polarization of light, while the light of the other polarization is either absorbed or redirected

somewhere else. Most such filters select either a linear polarization along some axis, or a

specific circular polarization, right or left.

A perfect polarizer transmit 100% of the slected polarization’s energy, thile the other

polarization is absorbed or redirected in its entirety, so nothing passes through. So suppose

an EM wave polarized along a complex unit vector e0, — i.e., having amplitude ~E = E0e0,
— goes through a filter preferring the polarization e1. In this case, the EM wave emerging

from the filter has amplitude

~E ′ = e1
(

e∗1
~E
)

: (112)

the direction of its polarization is e′ = e1, precisely as specified by the filter, while its

magnitude is

E ′ = (e∗1 · e0)E0 . (113)

Consequently, the intesitity ration of the fitered wave to the initial wave is

I

I0
=

|E ′|2
|E0|2

= |e∗1 · e0|2 . (114)

In particular, when the filter selects a planar polarization and the initial wave is also planarly

polarized — hence both unit vectors e1 and e0 are real, —

I

I0
= cos2

(

angle between e1 and e0
)

. (115)

This is the Malus Law, discovered by Étienne–Louis Malus back in 1808.

Another useful rule is that when the light from a completely unpolarized source — like

an incandecent light bulb or the Sun — goes through any polarizing filter, the light after

the filter is 100% polarized but has only 50% of its initial intensity. But when that light

goes through a second filter, its intensity then follows from the Malus Law (115) or its

generalization (114).
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