Aharonov-Bohm Effect and SQUIDs

AHARONOV-BoHM EFFECT

In classical mechanics, the motion of a charged particle depends only on the electric
and magnetic tension fields E and B; the potentials A° and A do not have any direct
effect. Also, the motion depends only on the E and B fields along the particle’s trajectory
— the EM fields in some volume of space the particle never goes through do not affect
it at all. But in quantum mechanics, the interference between two trajectories a charged
particle might take depends on the magnetic field between the trajectories, even if along
the trajectories themselves B = (. This effect was first predicted by Werner Ehrenberg and
Raymond E. Siday in 1949, but their paper was not noticed until the effect was re-discovered
theoretically by David Bohm and Yakir Aharonov in 1959 and then confirmed experimentally
by R. G. Chambers in 1960.

Consider the following idealized experiment: Take a two-slit electron interference setup,

and put a solenoid between the two slits as shown below:

L]

The solenoid is thin, densely wound, and very long, so the magnetic field outside the solenoid
is negligible. Inside the solenoid there is a strong B field, but the electrons do not go there;
instead, they fly outside the solenoid along paths 1 and 2. But despite B = 0 along both
paths, the magnetic flux ® inside the solenoid affects the interference pattern between the

two paths.

The key to the Aharonov—Bohm effect is the vector potential A. Outside the solenoid
B =V x A =0 but A # 0 because for any closed loop surrounding the solenoid we have a



non-zero integral

fA(xydx = # B(x) - d*Area = F, (1)

loop inside the loop
including the solenoid

the magnetic flux through the solenoid. (Technically, F' is the magnetic flux through the
whole loop surrounding the solenoid, but since the B field outside the solenoid is negligible,

the flux F' comes from the solenoid itself.)

Locally, a curl-less vector potential is a gradient of some function, so it (the vector

potential A(x)) can be removed by a gauge transform,
Ax) — A'(x) = A(x) + VA(x) = 0 for some A(x), (2)

but globally no single-valued A(x) can gauge away the vector potential along both paths
around the solenoid. Instead, we have two separate gauge transforms — the Aj(x) that
gauges away A(x) along the path #1, and the Ay(x) that gauges away A(x) along the
path #2 — but they are different transforms, A; # As. To see how this works, let x, be the

electron gun’s location while x4 is some point on the screen. Along path #1 from x4 to X,
dAi(x) = —A(x)-dx, (3)

hence

Ai(xs) — Mi(xg) = / A\ = — / A(x) - dx. (4)

path#1 path#1

Likewise, along path #2 from the same x4 to the same xq,
dAa(x) = —A(x)-dx (5)

and hence

No(xs) — Aa(xg) = / d\y = — / A(x) - dx. (6)

path#1 path#2



However, the integrals in eq. (4) and (6) are not equal to each other; instead

[ A [ Am-ax = fap-ix (7)
L

path#1 path#2

where L is the closed loop made from path#1 from the electron gun x4 to the point x; on
the screen and then path#2 in reverse from A(x,) back to the electron gun x4. By the
Stokes theorem, the loop integral (7) is the magnetic flux through the loop £, and since £

surrounds the solenoid

/A(x)-dx— /A(x)-dx :ij@c).dx

path#1 path#2 L
= F[through L]

= F[through the solenoid].

Consequently,

(Ar(xs) = M(xg)) — (Aa(xs) —Aa(xg)) = —F # 0, (9)

which means we cannot possibly have the same single-valued Aj(x) = Ay(x) gauge parameter

for both paths.

The other key to the Aharonov—Bohm effect is the the local phase transform of the
charged particle’s wave function which must accompany the gauge transform of the vector

potential,

for the same A(x). (10)

Let’s translate this local phase transform of the wave function to the language of the propa-
gation amplitude (AKA the evolution kernel) U(xz2,x;) from one point x; to another point

x2. For example from the electron gun x; = x, to some particular point xo = x4 on the



screen. By definition, the propagation amplitude during flight time ¢ is
def P
Ulx2,x1) = (x3] exp(—itH /h) |x1) , (11)

\I/(Xg,tg = t) = /U(XQ,Xl)\I/(Xl,tl = O) d3X1. (12)

When a gauge transform is accompanied by a local phase transform of the wave function
as in eq. (10), the propagation amplitude also changes it’s phase. Indeed, in order to keep

eq. (12) working in a new gauge, we need
U'(x2,x1) = exp (+i$A(x2)) x U(xa,x1) x exp (—i£A(x1)) . (13)

where the first phase factor changes the phase of the W(xg,to = t) while the second phase
factor compensates for the changed phase of the ¥(xy,t; = 0), thus

U'(xq,1) = /U/(XQ,Xl) x U'(x1,0) d*x,
= /exp(+i%A(x2))U(x2,x1) exp (—i$A(A1)) x exp(+ifA(x1)) ¥ (x1,0) d°x;

= exp(+ifA(x2)) X /U(XQ,Xl)\I/(Xl,O) d3x

= eXp(+’i%A(X2)) x W(xg,t).
(14)

In particular, suppose B = 0 along the electron’s path from x; to xo but the vector
potential does not vanish, A ## 0. Then locally the vector potential is gauge-equivalent to

zero, meaning there exist some A(x) such that
Ap(x) = A(x) + VA(x) = 0, (15)

if not everywhere then at least throughout the neighborhood of the electron’s path. Then

comparing the propagation amplitude U (x2,x1) in presence of the vector potential with



the similar amplitude Up(xz2,x1) for Ag = 0, we find

Up(x2,x1) = Ua(x2,X1) X exp (% (A(XQ) — A(xl)))

X2

= Ua(x2,X1) X exp %/VA-dx

X1

(16)

= Ua(x2,X1) X exp /A dx |,

and therefore

Ua(x2,x1) = Up(x2,X1) X exp /A dx | . (17)

Thus, even when the vector potential A does not lead to a magnetic field in the region the

electron travels through, it still manages to change the phase of its propagation amplitude.

Note: if the B field vanishes along the electron’s path but does not vanish somewhere
else, then we can make the gauge-transformed potential A’ = A + VA vanish along the path,

but it would not vanish somewhere else. Consequently, the relation

X2

Alx2) — A(xy) :/VA-dx - —72A-dx

X1

works only if we integrate A - dx along the electron path rather than some other line. In the

context of eq. (17), this means that

UA<X2,X1) = U()(XQ,Xl) X % / A-dx|. (18)

electron’s path

In the Aharonov—Bohm experiment, the electron can take two different paths from the

same point x, (the electron gun) to the same point x, on the screen. The interference pattern



on the screen follows from the net amplitude
Unet (x,, x,) = Upath1<xs’ x,) + Upath2<xs’ X,), (19)
which depends on the phase difference between the amplitudes for each path,
Ap(xs) = phase(Upathl(Xs, Xg)) — phase(UpathQ(Xs, Xg))- (20)

Note that along both paths B = 0 but A # 0, which affects the phases of the each amplitude
according to eq. (18), specifically

phase (Ugathl(xs,xg» = phase (Ugathl(xs,xg)> + % /A(x).dx,
path 1
(21)

phase <Ugath2(xs,xg)) = phase (UgathQ(Xs,Xg)) + % /A(x).dx.
path 2

Consequently, the phase difference (20) is affected by the vector potential according to

Apa = Aypy + % /A(x)-dx — % /A(X)-dx
path 1 path 2 (22)

= Apo + %XF,

where F' is the magnetic flux through the solenoid, and the second equality follows from
eq. (8).
For different points x5 on the screen we have different Apg(x;s), that’s why we see the

interference pattern on the screen! The magnetic flux term in eq. (22) is the same for all

points on the screen,
Aap(x) = Boplxs) + 2 x F, (23)

so it shifts the whole interference patter along the screen! Thus, even though B = 0 along
both paths an electron might take from the gun to the screen, the quantum interference

between the paths depends on the magnetic flux in the solenoid!



In the mathematical language, the Aharonov—Bohm effect feels the cohomology of the vector
potential A(x). In a topologically trivial space — like the flat 3D space without any holes —
specifying A (x) modulo gauge transforms A(x) — A(x) + VA(x) is equivalent to specifying the
magnetic field B(x) = V x A. However, in spaces with holes the vector potential modulo VA(x)
for single-valued A(x) contains more information than the magnetic field: In addition to B(x) for
x outside the holes, the vector potential also knows the magnetic fluxes through the holes! Indeed,

the integrals along closed loops

%A(x) -dx = F(loop) (24)

loop

are gauge-invariant for single-valued A(x), and when V x A = 0 everywhere outside the holes,
then the fluxes (24) depend only on the topologies of the loops in question — which hole(s) they
surround and how many times. In math, such integrals are called cohomologies of the one-form

A(x).

In classical mechanics, the motion of a charged particle depends on the magnetic field B in
the region of space through which the particle travels, and it does not care about any cohomologies
of the vector potential A. But in quantum mechanics, the Aharonov—Bohm effect makes quantum
interference sensitive to the cohomologies that the classical mechanics does not see. Specifically,
when the space has some holes through which the particle does not get to travel — like the solenoid
(and a bit of space around it) in the AB experiment — the interference between alternative paths
on different sides of a hole depends on the cohomology of A for that hole — i.e., the magnetic flux

through the hole.

To be precise, the interference between two paths depends on the phase difference (23)
only modulo 27 — changing the phase by 27n for some integer n would not affect the

interference at all. Consequently, the Aharonov—Bohm effect is un-detectable for

2rh
F=""xa integer, (25)
q

or in other words, the AB effect measures only the fractional part of the magnetic flux
through the solenoid in units of

21h

= 2
|q|

(26)

where ¢ is the electric charge of the particles used in the experiment. In particular, the



Chambers’s experiment using electron beams was sensitive to the magnetic flux in units of

orh
Fe = T~ 4135667697 x 107" Wb (Weber = Tesla x m?). (27)

e

A more practical version of the Aharonov—Bohm experiment is a SQUID (Superconducting
Quantum Interferometry Device) magnetometer, which is explained in the next section of
these notes. A SQUID uses Cooper pairs instead of single electrons; the electric charge of
such a pair is —2e, so a SQUID measures the fractional part of the magnetic flux in units of

2

C
Flp - 2e

— 2.067833848 x 1075 Wh. (28)

Note that particles of different charges would measure the fractional part of the magnetic
flux F in different units! Thus, were Nature kind enough to provide us with two particle
species with an irrational charge ratio q; /g2, then measuring the fractional part of the same
flux F in two different units F} and Fy with irrational F; /F5, we would be able to reconstruct
the whole flux F' and not just its fractional part. However, in reality all the electric charges
are integral multiplets of the fundamental charge units e. Consequently, the AB effect using
any existing particle species can measure only the fractional part of the magnetic flux in

universal units

onh
F = F¢ = Z50 = 4135667697 x 10715 Wh. (29)
€

Superconducting Quantum Interferometry Devices

INTRODUCTION

The superconducting quantum interferometry devices — commonly called the SQUIDs
— are extremely sensitive magnetometers, capable of measuring magnetic field variations by
as little as 1074 Tesla, or even smaller. The SQUIDs operate on a principle very similar to

the Aharonov-Bohm effect, that’s why these notes include a section on the SQUIDs.

Warning: This section of the notes was written for an extra lecture to the graduate students
who have already been through 3 lectures on superconductivity and Josephson junctions.
For the undergraduate students who read these notes, here is a very quick summary of the

background material necessary to understand the SQUIDs.



In a superconducting metal, electron-phonon interactions create attractive forces between
electrons with near-opposite momenta near the Fermi surface. At very low temperatures,
such electron pairs form bound states called Cooper pairs, and then these Cooper pairs —
which act as slow bosonic particles — form a Bose—Einstein condensate. This condensate acts
as a superfluid similar to the liquid helium II, but because the Cooper pairs are electrically
charged, this superfluid conducts electric current (called the supercurrent to distinguish it

from the current carried by the un-paired electrons) and is sensitive to the magnetic field.

In a Bose-FEinstein condensate, all Cooper pairs are in the same quantum state with

some wavefunction ¢pair(x). The Landau-Ginzburg complex scalar field

\II(X) = Npairs X @Z)pair(x) (30)

governs the density and the flow velocity of the condensate. In particular, the condensate

density is simply ns = |¥|?, while the velocity leads to the supercurrent

2e
Js = _Mpair Ne (hV phase(V) + QeA). (31)

In a bulk superconductor with uniform ng, this equation leads to

4 2
VxJ = — eM"S B (32)
and hence
4 2
(V2+r5)B(x) = 0 for k* = —C N0 (33)

M

Thanks to this equation, the magnetic field cannot penetrate a superconductor beyond the
London’s penetration depth (1/k) ~ 10 to 100 nm. From a thick superconductor, the

magnetic field is completely expelled beyond a thin surface level; this is the Meissner effect.

In a thick superconducting wire, the current flows only on its surface, so in the middle

of the wire
2e
V phase(V) = _EA' (34)
In particular, in the absence of the magnetic field — and in the gauge where A = 0, — the

phase(W) is constant along the wire.



Now consider a Josephson junction: Two pieces of superconducting wire separated by
a very thin barrier. The electrons — and hence the Cooper pairs — cannot classically flow
through the barrier, but they can jump through it by quantum tunneling. Consequently, a
week supercurrent can flow thorough the barrier, but it requires different phases ¢; # ¢9 of

the condensate on the two sides of the Josephson junction. Specifically,

I = Iy x sin(¢1 — ¢9) (35)

where Iy depends on the junction’s geometry. Experimentally, it’s measured as the strongest
current that can flow through the Josephson junction without resistance, i.e. without causing

a voltage drop across the junction.

Josephson junctions are very interesting devices, but explaining them goes beyond the
scope of these notes. Even explaining the origin of the current formula (35) is beyond the
scope of these notes. Instead, let me explain how a pair of Josephson junctions makes a

SQUID magnetometer.

SQUIDs

The SQUIDs come in many shapes, but the simplest version consists of two similar

Josephson junctions in a single loop of superconducting wire,

JI#1

(36)

For simplicity, let both Josephson junctions have the same maximal supercurrent Iy. Then,

in complete absence of the magnetic field, the maximal supercurrent which can flows through

10



the SQUID without generating a voltage is obviously Ihax = 21y. However, in presence of

the weak magnetic field, the maximal zero-voltage current through the SQUID is reduced to

TF
oS —
Fy

Imax(B) = 2Ig x

(37)

where F' is the flux of the magnetic field through the squid’s loop and Fj is the magnetic

flux quantum in the superconductor,

2rch

Fy = FP = = 2.067833848 x 1015 Wb, (38)

Thanks to the very small value of this magnetic flux quantum, the maximal zero-voltage
current through the SQUID — which can be easily measured — is extremely sensitive to
the tiniest changes of the magnetic field through the SQUID’s loop. And when even higher
sensitivity is needed, one may combine a SQUID with a magnetic amplifier, or with a cas-
cade arrangement of amplifiers; the engineering of magnetic couplings between SQUIDs and

amplifier loops is tricky, but the physics is quite straightforward.

Eq. (37) follows from the Aharonov—Bohm-like interference between the Cooper pairs
— or rather between the Cooper pair condensates — flowing through the two Josephson
junctions. To see how this interference works, consider the phases ¢, ..., ¢4 of the Cooper
pair condensate at 4 points of the SQUID: The two ends (1) and (2) of the top Josephson
junction, and the two ends (3) and (4) of the bottom junction:

1 2
(39)
3 4
Eq. (35) for the current through each junction tells us
I = I xsin(or — 6o).
X (40)

1Pt = 150 sin(g3 — @),

so assuming similar makes (and hence similar Ip) of the two junctions, the net current

11



through the SQUID is
et — ptop 4 pbot _ g (sin(<b1 — ¢2) + sin(¢3 — ¢4))- (41)

Now consider the left half of the SQUID, specifically the SC wire going from the left end
(3) of the bottom junction to the left end (1) of the top junction. Assuming this wire is thick
enough, the magnetic field and the supercurrent are expelled by the Meissner effect from the
middle of the wire; instead, the supercurrent flows in a thin layer (of thickness ¢ = London’s

penetration depth) along the wire’s surface. Thus, in the middle of the wire

—2ehn 2e
3, — o s (Vphase + %A) = 0, (42)
hence
2
along the wire’s axis :  d(phase) = —EeA(X) -dx (43)
and therefore
1
—2e .
1 — ¢3 = T/A-dx along the left wire. (44)
3

The right half of the SQUID — i.e., the SC wire going from the right end (4) of the bottom
junction to the right end (2) of the top junction — also has the supercurrent flowing only

along the wire’s surface, so in the middle of the wire

2
d(phase) = —%eA(X)'dX (45)
and therefore
5 2
P2 — Py = _TG/A-dx along the right wire. (46)
4

Now let’s take a difference between eqs. (44) and (46) for the two halves of the SQUID:

—2e
((]51 - (]53) - ((bg - (b4) = —h / A -dx — / A - dx . (47)
left wire right wire
from 3 to 1 from 4 to 2

Geometrically, the SQUID has a much larger size then each of the two Josephson junctions,

12



so the distances between the two superconductors within each junction — i.e., between (1)
and (2), or between (3) and (4), — are much shorter than the distance between the two
junctions along either side of the SQUID. So assuming a non-singular vector potential near
either junction, we may approximate the integrals in eq. (47) as integrals from the bottom

junction to the top junction along 2 different paths,

1 topJJ

/A cdx = / A - dx along the left wire,

3 bottom JJ (48)
2 topJJ

/A Sdx = / A - dx along the right wire.

4 bottom JJ

Hence, the difference between these two integrals is the integral along a closes path which
runs up the left wire from the bottom JJ to the top JJ and then down the right wire from
the top JJ down to the bottom JJ,

1 2
/A-dx—/A-dx: 7{ A - dx
3 4

whole SQUID (49)
(( by the Stokes’ theorem ))

= F, the magnetic flux through the SQUID.

In the context of eq. (47), this formula means
2
(1 —¢3) — (P2—¢4) = -5 F = =21 (50)

Next, let’s re-organize the LHS here in terms of differences ¢1 — ¢2 and ¢3 — ¢4 instead
of ¢1 — ¢3 and ¢2 — ¢4, thus

—2rF

(01— ¢2) — (93— ¢3) = (1 —¢3) — (P2 —¢4) = o (51)
Also, let # denote the average between ¢1 — ¢o and ¢3 — ¢4,
0 = 3(¢1 —d2) + (03— ¢a); (52)

13



then in terms of this # and the magnetic flux F' through the SQUID,

T’ T’

(¢1—¢2):9—7> (P3—4) = 0 + —. (53)
0

Finally, let’s plug these phase difference across each Josephson junctions into eq. (41) for the

net current through the SQUID:

[net
Iy

= sin(¢1 — ¢2) + sin(¢z — ¢4)

mF
= 2siné —
sinf x cos R
or equivalently
F
et = (2]0 Ccos 7T—> X sin 6. (55)
Fy

Experimentally, we control the magnetic flux F' through the SQUID but we have no direct
control over the averaged phase difference 6. Instead, we control the net current through the
SQUID while the 6 adjusts itself to whatever it takes to carry the desired current. However,
for any possible value of #, the sinf ranges between —1 and +1 and cannot exceed these
limits. Consequently, the net supercurrent through the SQUID varies in the range

—21y

< I < 420 (56)

Tl
Cos 2

v
COS —
Fy

but cannot get any stronger than this in either direction. In other words, the maximal

supercurrent through the SQUID is

Imax = 2]0 X

T
COS — | .
Fy

Quod erat demonstrandum.
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PS: As written, eq. (37) is valid for the relatively weak magnetic fields — strong enough to
affect the interference between the two Josephson junctions, but not so strong to affect the

Josephson junctions themselves. In stronger fields, eq. (37) becomes

7l
CcoS ——

Imax = 2Ip(B) % i

(57)

where [y(B) decreases with the magnetic field. The specific analysis of the Iy(B) is quite
beyond the scope of this notes, so let me simply say two things: (1) the details depend on

the precise geometry of the Josephson junctions, and (2)

Q

Iy(B) Ip(0) aslong as B x (Junction’s area) < Fy. (58)

Note that the junction’s area is much smaller than the area of the SQUID’s loop, so this

condition can hold while at the same time

Flsquid] > Fjp. (59)
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