

1. Let's start with a few basic questions about attenuating EM waves and skin effect.
 - (a) At 20° C temperature, pure silicon has conductivity $\sigma \approx 4.3 \cdot 10^{-4}$ Ω/m and dielectric constant $\epsilon \approx 11.7$. If you plant an electric charge in the middle of a silicon crystal, how long would it take for that charge to drift to the crystal's boundary?
 - (b) Gold is a good electric conductor — $\sigma = 4.1 \cdot 10^7$ Ω/m — and it does not oxidize when exposed to air, but it's quite expensive. The high-frequency electronics equipment often uses wires made of a cheap metal but covered with a thin layer of gold. If you were designing an apparatus working with signals of 10 GHz frequency, how thick a gold coating would you need for your wires?
2. The water in lake Austin has electric conductivity about $\sigma \approx 0.05$ Ω/m and dielectric constant $\epsilon \approx 80$.
 - (a) Check that this water acts as a good conductor with $\sigma \gg \omega\epsilon\epsilon_0$ — at the frequency $\omega_1 = 2\pi \times 1$ MHz, but as a poor conductor with $\sigma \ll \omega\epsilon\epsilon_0$ at the higher frequency $\omega_2 = 2\pi \times 100$ MHz.
 - (b) Calculate the attenuation rates of the radio waves in the water of Lake Austin at the 1 MHz and the 100 MHz frequencies.
3. Consider an attenuating EM wave in a good conductor. Show that the magnetic field lags behind the electric field by the 45° phase and has higher time-averaged energy than the electric field. Specifically,

$$\frac{\langle u \rangle_{\text{mag}}}{\langle u \rangle_{\text{el}}} = \frac{|\epsilon_{\text{eff}}|}{\text{Re}(\epsilon_{\text{eff}})} \xrightarrow{\text{for a good conductor}} \frac{\sigma}{\omega\epsilon\epsilon_0} \gg 1. \quad (1)$$

4. At the near-infrared and visible-light frequencies, the metals are less conductive than at the low frequencies, and consequently they also have lower-than-expected reflectivities to the IR and visible EM waves. For example, at the orange-color frequency 500 THz (vacuum wavelength $\lambda = 600$ nm), polished copper has head-on reflectivity $R = 85\%$.

Infer the conductivity σ_{HF} of copper at this high frequency from its reflectivity, and then compare it to the copper's DC conductivity $\sigma_{\text{DC}} = 5.96 \cdot 10^7 \text{ S/m}$.

5. Consider the gravity waves on the water's surface. In shallow water, the waves are not dispersive: they travel with a fixed speed $v = \sqrt{gh}$ (where h is the water's depth and g is the gravitational field). But in deep water, the waves cannot feel the bottom, so they behave as if the depth were only $\lambda/2\pi$. In other words, the waves in deep water have *dispersion relation*

$$\omega(k) = \sqrt{gk}. \quad (2)$$

- (a) Show that for such waves the phase velocity is *twice* the group velocity.
- (b) Calculate the dispersion of the waves in deep water and hence the maximal signal rate you can sent using such waves to a destination at distance L .

6. In a related problem, consider wave functions in quantum mechanics. A free particle traveling in x direction has wave function

$$\Psi(x, t) = A \exp\left(\frac{i}{\hbar}(px - Et)\right) \quad (3)$$

where p is the particle's momentum and $E = p^2/2m$ is its kinetic energy.

- (a) Find the phase velocity and the group velocity of this wave. In particular, show that this time its the group velocity is twice the phase velocity.
- (b) Which velocity – if any – is the physical velocity of the moving particle?

7. Consider the dielectric constant $\epsilon(\omega)$ — and hence the refraction index $n(\omega)$ — of a gas. At frequencies ω that are not too close to any of the resonance frequencies ω_i of the gas's molecules, the $\epsilon(\omega)$ is approximately real and obtains as

$$\epsilon(\omega) = n^2(\omega) = 1 + \frac{Ne^2}{\epsilon_0 m_e} \sum_i \frac{f_i}{\omega_i^2 - \omega^2} \quad (4)$$

where N is the gas's density, and each $f_i > 0$ is the relative strength of the resonance at frequency ω_i .

Use this formula to show that

$$\frac{dn}{d\omega} > 0 \quad \langle\langle \text{normal dispersion} \rangle\rangle \quad (5)$$

$$\text{and } n^2 + \frac{\omega}{2} \frac{dn^2}{d\omega} > 1, \quad (6)$$

hence for any frequency at which we may use eq. (4), the phase velocity and the group velocity of the EM waves in the gas obey

$$v_{\text{group}}(\omega) < v_{\text{phase}}(\omega) \quad \text{and} \quad v_{\text{group}}(\omega) \times v_{\text{phase}}(\omega) < c^2 \quad (7)$$

and therefore

$$v_{\text{group}}(\omega) < c. \quad (8)$$

8. [15 points] Consider a toy model of a hydrogen atom: The electron forms a uniformly charged ball of radius a , with the proton at its center. The electron may move around as a rigid ball so its center vibrates around the proton. This makes for a single-resonance model of the atom.

- (a) Find the resonant frequency ω_0 of this model.
- (b) Get the numeric value of this frequency for $a = 0.5 \text{ \AA}$. In what part of the electromagnetic spectrum does this frequency lie?

At low frequencies, eq. (4) for the refraction index of a gas becomes the Cauchy formula

$$n(\lambda) \approx 1 + A \left(1 + \frac{B}{\lambda^2} \right) \quad (9)$$

where $\lambda = 2\pi c/\omega$ is the vacuum wavelength for the frequency ω , while A and B are parameters of the gas; A is called the *coefficient of refraction* and B the *coefficient of dispersion*. The Cauchy formula is derived at the very end of the textbook §9.4.3.

(c) Calculate the coefficients A and B for the gas made of the single-resonance model atoms. Assume standard conditions (temperature 0° C and pressure 1 atm) to get the density of the gas. Compare your results to the measured values for the hydrogen gas at standard conditions: $A_H = 1.36 \cdot 10^{-4}$, $B_H = 7.7 \cdot 10^{-15} \text{ m}^2$.