
PHY–352 L. Problem set #4. Due February 10, 2026 (Tuesday).

1. Let’s start with a few basic questions about attenuating EM waves and skin effect.

(a) At 20◦ C temperature, pure silicon has conductivity σ ≈ 4.3 · 10−4 Ω

/m and dielectric

constant ǫ ≈ 11.7. If you plant an electric charge in the middle of a silicon crystal, how

long would it take for that charge to drift to the crystal’s boundary?

(b) Gold is a good electric conductor — σ = 4.1 · 107 Ω

/m — and it does not oxidize when

exposed to air, but its quite expensive. The high-frequency electronics equipment often

uses wires made of a cheap metal but covered with a thin layer of gold.

If you were designing an apparatus working with signals of 10 GHz frequency, how thick

a gold coating would you need for your wires?

2. The water in lake Austin has electric conductivity about σ ≈ 0.05

Ω

/m and dielectric

constant ǫ ≈ 80.

(a) Check that this water acts as a good conductor with σ ≫ ωǫǫ0 — at the frequency

ω1 = 2π × 1 MZh, but as a poor conductor with σ ≪ ωǫǫ0 at the higher frequency

ω2 = 2π × 100 MHz.

(b) Calculate the attenuation rates of the radio waves in the water of Lake Austin at the

1 MHz and the 100 MHz frequencies.

3. Consider an attenuating EM wave in a good conductor. Show that the magnetic field lags

behind the electric field by the 45◦ phase and has higher time-averaged energy than the

electric field. Specifically,

〈u〉mag

〈u〉el
=

|ǫeff |
Re(ǫeff)

−−−−−−−−−−−−−→
for a good conductor

σ

ωǫǫ0
≫ 1. (1)

1



4. At the near-infrared and visible-light frequencies, the metals are less conductive than at the

low frequencies, and consequently they also have lower-than-expected reflectivities to the

IR and visible EM waves. For example, at the orange-color frequency 500 THz (vacuum

wavelength λ = 600 nm), polished copper has head-on reflectivity R = 85%.

Infer the conductivity σHF of copper at this high frequency from its reflectivity, and then

compare it to the copper’s DC conductivity σDC = 5.96 · 107 Ω

/m.

5. Consider the gravity waves on the water’s surface. In shallow water, the waves are not

dispersive: they travel with a fixed speed v =
√
gh (where h is the water’s depth and g is

the gravitational field). But in deep water, the waves cannot feel the bottom, so they behave

as if the depth were only λ/2π. In other words, the waves in deep water have dispersion

relation

ω(k) =
√

gk. (2)

(a) Show that for such waves the phase velocity is twice the group velocity.

(b) Calculate the dispersion of the waves in deep water and hence the maximal signal rate

you can sent using such waves to a destination at distance L.

6. In a related problem, consider wave functions in quantum mechanics. A free particle traveling

in x direction has wave function

Ψ(x, t) = A exp

(

i

h̄

(

px− Et
)

)

(3)

where p is the particle’s momentum and E = p2/2m is its kinetic energy.

(a) Find the phase velocity and the group velocity of this wave. In particular, show that

this time its the group velocity is twice the phase velocity.

(b) Which velocity – if any – is the physical velocity of the moving particle?
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7. Consider the dielectric constant ǫ(ω) — and hence the refraction index n(ω) — of a gas.

At frequencies ω that are not too close to any of the resonance frequencies ωi of the gas’s

molecules, the ǫ(ω) is approximately real and obtains as

ǫ(ω) = n2(ω) = 1 +
Ne2

ǫ0me

∑

i

fi
ω2
i
− ω2

(4)

where N is the gas’s density, and each fi > 0 is the relative strength of the resonance at

frequency ωi.

Use this formula to show that

dn

dω
> 0 〈〈 normal dispersion 〉〉 (5)

and n2 +
ω

2

dn2

dω
> 1, (6)

hence for any frequency at which we may use eq. (4), the phase velocity and the group

velocity of the EM waves in the gas obey

vgroup(ω) < vphase(ω) and vgroup(ω)× vphase(ω) < c2 (7)

and therefore

vgroup(ω) < c. (8)

8. [15 points] Consider a toy model of a hydrogen atom: The electron forms a uniformly

charged ball of radius a, with the proton at its center. The electron may move around as a

rigid ball so its center vibrates around the proton. This makes for a single-resonance model

of the atom.

(a) Find the resonant frequency ω0 of this model.

(b) Get the numeric value of this frequency for a = 0.5 Å. In what part of the electromagnetic

spectrum does this frequency lie?
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At low frequencies, eq. (4) for the refraction index of a gas becomes the Cauchy formula

n(λ) ≈ 1 + A

(

1 +
B

λ2

)

(9)

where λ = 2πc/ω is the vacuum wavelength for the frequency ω, while A and B are param-

eters of the gas; A is called the coefficient of refraction and B the coefficient of dispersion.

The Cauchy formula is derived at the very end of the textbook §9.4.3.

(c) Calculate the coefficients A and B for the gas made of the single-resonance model atoms.

Assume standard conditions (temperature 0◦ C and pressure 1 atm) to get the density of

the gas. Compare your results to the measured values for the hydrogen gas at standard

conditions: AH = 1.36 · 10−4, BH = 7.7 · 10−15 m2.
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