LOCAL CONSERVATION LAWS of
ELECTROMAGNETIC ENERGY AND MOMENTUM

Earlier in class we saw that the electric charge is not only conserved but locally conserved.
That is, the net charge inside some volume of space can charge with time only due to the
net electric current through the surface of that volume. In the differential form, this local
conservation law becomes the continuity equation

dp

— + V-J =0. 1

T (1)
Similar local conservation law applies to the net energy of a system, provided we include all
forms of the energy, including the EM energy. Thus, if upet(x, ) is the net energy density of
the system and Spet(x,t) is the density of the net energy flow, then

+ V'Snet — O (2)

Likewise, the net momentum of a system — including both the mechanical momentum and
the momentum of the EM fields — is locally conserved. Specifically, let gflet(x, t) be the

density of the i™ component of the net momentum while —T" (x, ¢) is the density of that

net

component’s flow in the j* direction; then

ag Iilet

St = VW, = 0. (3)

Later in these notes we shall see that T is the stress tensor, and that this tensor must be
symmetric, T% = TJ¢. But first, let’s take care of the energy conservation, and specifically

the electromagnetic energy conservation.

Electromagnetic Energy and the Poynting Theorem

While the net energy is always conserved, the electromagnetic energy can be converted

to another form; by the work-energy theorem, the rate at which the EM energy is converted



to other forms is the electric power,

d
7 Uem = —Powerep, . (4)

For a circuit element like a piece of resistive wire, Power = IV, or in terms of fields and
currents,

I = J- Area|cross-section],
V = E-Length, (5)
hence Power = (J-E) * (Volume),

which generalizes to a conductor carrying non-uniform J and E as
Poweren = / J-Ed*x. (6)
In other words
Pon(x,t) = J(x,t)-E(x,t) is the EM power density. (7)

Consequently, we may restate the work-energy theorem (4) for the electromagnetic energy
in the local form as

OUem

ot

+ v'scm + Pom = 0. (8>

Our next task is to spell out the EM energy density uen and the flow density Sep in
terms of the EM fields, and then to verify that eq. (8) indeed holds true. For simplicity, let

me focus on the EM fields in the vacuum and leave the dielectric and/or magnetic media for

[vour next homework, set#06, problem#£4.

We saw earlier in class that the net EM energy of charges and current in the vacuum is

Uen = / / / (%OE2 + 2%0]32) dx, 9)

so we may identify the integrand

€0

Uem = 5E2 + —B? (10)
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as the EM energy density. So let’s take the time derivative of this energy density and try to


http://web2.ph.utexas.edu/~vadim/Classes/2026s/hw06.pdf#page=3

re-cast it in the form of eq. (8). Let’s start with the electric term:

—(=E°) = ¢gE-— = E-— 11
ot (2 ) Y ot (1)
where by the Ampere-Maxwell Law
oD
— = H-1J 12
thus
8 60 2 .
§<§E> - —E-J + E-(VxH). (13)
Likewise, for the magnetic term we have
0 1 1 0B 0B
~(—B?) = —B. 2= = H.— 14
ot (2#0 ) o ot ot (14)
where by the Induction Law
0B
E = -V X E, (15)
thus
0 1
~—(—_B?| = —_H. E). 1
5 (5om) (V % E) (16)

Altogether, this gives us

OUem

ot

Por + — J.E + (-E-J) + E-(VxH) — H-(VxE)

=~ (B (VHY) + HE(V'ET) = Vi (ETH")) (17)
= —-V-(ExH) =-V- S

for Sem © ExH.

In other words, we have verified the Poynting theorem

Olem

ot

+ V-Sem + Pem = 0 (8)

in which we identify the flow density of the EM energy with the Poynting vector Sen, = ExH.



As an example of such energy flow density, consider a plane EM wave moving at the
speed of light ¢ in some direction n; for such a wave, we should have Sep, = Uem * cn.
And indeed, when we study the plane waves later in class, we shall see that this relation
is precisely correct. For example, consider a vertically polarized plane wave moving in the
direction 41,

E(z1,t) = Ep cos(kx; —wt) * (0,0, 1),
H(z1,t) = Hy cos(kxp — wt) % (0,—1,0), (18)

forw = ¢k and Hy = 1/G—OEO = ceg By .
Ho

For this wave

Uem = cos2(k;:c1 — wt) * <%0Eg + %Hg = 60E3)7 (19)
ISem| = cos?(kxy — wt) * <E0Ho = c€p ES)

= C* Uem 9 (20)
and the direction of the Poynting vector is
(0,0,1) x (0,—1,0) = (+1,0,0), the direction of the wave. (21)

More generally, for any plane wave the directions of the electric and magnetic fields are
always L to the wave direction n and to each other. Specifically, if one looks at the EM
wave from behind (i.e., the wave moves away the observer), then the direction of H is 90°

to the right from the direction of E, so that

direction(S = E x H) = n = away from the observer. (22)



Stress Tensor and Momentum Flow

Before we deal with the momentum of the electromagnetic fields, let’s consider the me-
chanical momentum of some continuous material, fluid or solid. In general, there are internal
forces in the material, and they transfer the momentum between the neighboring pieces of
material. For example, consider the hydrostatic pressure P(x) in a fluid, which exerts a
force F' = P x Area on any boundary in the direction | to that boundary. If the pressure

is non-uniform, then there is a net force on each volume element V of the fluid,

F - // P(x) (~darea) — — ///(vp) x, (23)
%

boundary

thus force density
dF
— = —VP. 24
oy (24)
In a solid material, the internal forces do not have to be perpendicular to the boundary;
instead, there are all kinds of stresses: tension, compression, sheer, etc.. Most generally, the

force on a da infinitesimal boundary area is
dF* = TY dd/ (25)

for some stress tensor T%. The boundary here could be external or internal, with the positive
direction being inward rather than outward, hence a hydrostatic pressure P corresponds to

stress tensor
T = —PsY. (26)

Similar to a non-uniform pressure, a non-uniform stress tensor 7% (x) leads to non-zero net
internal force of density
dr*

v +VIT, (27)

In equilibrium, these internal forces must be balanced by some kind of external forces of

* This sign convention came from mechanical engineering where the tension is considered a positive stress
while compression a negative stress.



opposite density fexs(x),
VT + fly = 0. (28)
Out of equilibrium, the net internal + external forces would generate — or change — the me-

chanical momentum momentum of the material in question. In terms of the local momentum

density g(x,1),

0
S = fot + f, (29)
or in terms of the stress tensor,
g’ o .
o = VT A e (30)

And that’s why we may identify the 7% — or rather —7% — as the flow density in the j**

direction of the it" component of the momentum.

The stress tensor must be symmetric 7% = T7¢, because otherwise the internal forces (27)
would generate a non-zero net torque and hence break the Law of Angular Momentum

Conservation. Indeed, the net torque of the internal forces is

Pt = /// x X g () P, (31)

The = // / ikl (fh = VT Px (32)

or in components

where

(idk (ngke) _ v£<€z’jk$ka£) _Eijkaé(vémj _ 543‘) _ ve(ﬁz‘jkijM) — ¢likki (33)

Tiint = // eIk I TR @2areal — ///€ijkaj d’x. (34)

boundary

hence

Moreover, if a continuous body has a boundary not subject to any external forces, then the

stress tensor on that boundary must vanish, so the boundary term in the above formula



actually vanishes and we are left with

To make sure this self-torque is zero and the angular momentum is conserved, we need

IR = 0 = TP = TH (36)

quod erat demonstrandum.

Although the above argument was aimed at mechanical forces in some continuous ma-
terial, the result that the stress tensor should always be symmetric extends to the non-
mechanical systems such as the electromagnetic fields — as we shall see in the next section

— and even to the quantum fields of QED or other quantum field theories.

Electromagnetic Momentum and Stress Tensor

Similar to the mechanical momentum of some continuous material, the momentum den-
sity gem of the EM fields, the EM stress tensor Tgn, and the EM force density fo,, should
obey the local-momentum-conservation equation

d9im

— ViTH L. 37
at v em + fem ( )

Note the opposite sign of the EM force term here relative to the mechanical equation (30):
that’s because in the mechanical case foxt was the external force density on the mechanical
medium in question, while in eq. (37) fen, is the force density by the EM fields on whatever

charges and currents might be present. Specifically, the net electric + magnetic force is

Pocere = [[[d*x(px)E00) + 36x) x Bx). (3)

so the EM force density is

fon = pE + J x B. (39)

The EM momentum density g obtains from the following heuristic argument: A plane

EM wave propagating in the direction n is equivalent to a stream of photons moving at



velocity cn; the energy and the momentum of a massless photon are related by the relativistic
formula p = (E/c)n, so the momentum density and the energy density should have a similar
relation,

Uem
Gom = z n. (40)

The same wave has Poynting vector Sep, = ctemn, so we may identify
1
gem = gsem = weocExH = D x B. (41)

Although we have derived eq. (41) just for the plane waves, it is generally true for any
configuration of the EM fields. Indeed, let’s verify that this momentum density of a most
general EM field configuration obeys the local momentum conservation formula (37). By
Maxwell equations,

oD 0B

= H-J 2 - VxE 42
hence for gey, as in eq. (41),
agaim:%—?xB+Dx%—]?:(VxH)xB—JxB—Dx(VxE). (43)
At the same time,
fon = pE + JxB = (V-DE + J x B, (44)

so together

Ogem
ot

+ fon = (VxH)xB 4+ (V-D)E — D x (V xE)
(45)

1
in vacuum — —(V xB)xB + 60<(V-E)E - Ex(VxE)).
Ho

where the RHS should be the total space derivative V/T% of some stress tensor 7%. To see



that this is indeed the case, let’s start with the red electric terms:

[Ex (VxE)]" = Fpitmytpm
= (§50m — 5 It pIVEE™ (46)
= E'V'E} — EIVIE,

hence
(V-E)E — Ex (VxE)' = EV/E/ +EIVIE — EIVE
_ VI(EE) - VI(IE?) (47)
= V/(E'E) — LE*5Y).

As to the magnetic blue term on the bottom line of eq. (45), we have
(VxB)xB = (V-B=0)B — Bx (VxB) (48)

which looks exactly like the electric terms but with B instead of E, hence in exactly similar

fashion

[(VxB)xB]' = V/(B'B — 1B%%). (49)

Altogether, the RHS of eq. (45) indeed has the desired form V/T% for the Mazwell stress
tensor
Téiyn = GO(EZEJ — %E2(SZ]) + — (BZBJ _ %B2(52J>
110

y 1 . . .

= ¢E'E + M—BZB] — Uem0™ (50)
0

= (B'DY = D'EY) + (H'B’ = B'H’) — uemd”.

Together, this stress tensor, the momentum density gey = D x B, and the EM force density

fomm = pE + J x B obey the local momentum conservation equation

09tm
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COMMENTS ABOUT MAXWELL STRESS TENSOR

I would like to conclude this notes with a few comments about the Maxwell stress
tensor (50). First of all, for most field configurations this tensor is highly anisotropic,
T # —P§7. For a good example, consider a uniform magnetic field B in x3 direction,

and no electric field. In this case,

g 1 y g B2 . g
= By = (e ), 61)
240 2410
or in the matrix form
) -1 0 0
B
Tem = — 0O -1 0 ) (52)
2410
0 0 +1

In other words, we have tension in the direction of the magnetic field but compression in the

L directions. Also, both the tension and the compression have magnitudes

B2
|P| = — =~ (B in Tesla)? x 4 atm. (53)
2410
In a plasma, this magnetic pressure/tension is often much stronger than the gas pressure,

and that’s why the magnetic field plays such important role in plasma physics.

Next, consider a hot cavity filled with EM radiation emitted by the walls (and maybe
also by the gas inside the cavity). In thermal equilibrium, there are EM waves moving in all
direction at once, so the electric and the magnetic fields have zero means but positive mean

squares,

(E) = (B) = 0 but (E*) > 0 and (B?) > 0. (54)

Furthermore, at any particular point x and instance of time ¢, the momentary electric field

E(x,1) is equally likely to point in any direction, so averaging over such directions we get

. d’Q(n) ; 59
B nl] _ 2 1.7 2
<EE>_E//—47T n'n) = B - (55)
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and hence after averaging over the field’s magnitudes as well as its directions

(E'E7) = 15 (E?). (56)
Likewise, for the magnetic field we also have

(B'B7) = 15 (B?). (57)
Consequently, the mean EM stress tensor becomes

(1) = «((E'E) = 309 (B)) + —-((B'B) — Jo (B))

(
O(%(sij <E2> _ %yj <E2>> + %(%&j <B2> _ %(ﬁj <B2>>
(-

= o407 (E?)) + :0 (—407 (B2) (58)
_ _5—<6—0<E2> + ;0 <B2>>
= —5; X (Uem )

Or in macroscopic terms, the thermal radiation has isotropic stress tensor related to the

energy density as
T2 = =30 U .- (59)

Such isotropic (and negative) stress tensor corresponds to the radiation pressure

_ 1 ij
Prad = 3Urad, Trad

= —0YPaq. (60)
Note: we have obtained the relation pressure = %energy,density for the classical EM
radiation. But the quantum theory yields exactly the same result: The ideal gas of relativistic

photons has P = %u Indeed, the ideal gas of any massless or ultra-relativistic particles has

1
P—3u.
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