PLANE ELECTROMAGNETIC WAVES

In general, a plane wave is a solution of the free wave equation
1 0 9
(’U_QW -V ) \I/(X, t) =0 (1)

of a specific form

U(x,t) = Wgcos(k-x — wt + ¢), (2)

where w = 27 f is the (angular) frequency and

k = —k (3)
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is the wave vector; the plane wave propagates in its direction k. The amplitude Wy and the

phase ¢ of the wave can be combined into the complex amplitude
o = Woe', (4)
hence
U(x,t) = Re (@Doeik'x_i“t). (5)
In linear formulae, I shall often write this formula as simply

\I/<X, t) _ w()eik'xiiwt (6)

and leave implicit taking the real part of the RHS.

Now let’s specialize to the electromagnetic wave in some medium. For simplicity, let’s

assume a uniform linear medium where
D = eE, B = puuoH, (7)

for some real electric permittivity €(w) and magnetic permeability u(w), although they might

depend on the frequency w. Let us also assume there are no free charges or conduction



currents, so the Maxwell equations for the EM fields in this medium become simply

vV.-D = 0, (8)

V.B =0, 9)
0B

VXE——E, (]_0)
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As we saw earlier in class (c¢f. my notes on Maxwell equationd), these equations lead to the

wave equations for all 6 components of the EM fields E and H:
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and the solutions of the wave equation (12) includes the plane EM waves
E(x,t) = Eexplik-x — iwt),
( (14)

H(x,t) = Hexp(ik -x — iwt).

However, there is more to the Maxwell equations (8)through (11) than the wave equa-
tion (12), and this leads to several constraints on the 6 complex amplitudes &, , . and H, y -
of a plane EM wave (14). Indeed, for a plane wave, the space derivative V acts by multiply-
ing by ik while the time derivative 0/0t acts by multiplying by —iw. Consequently, Maxwell
egs. (8) and (9) become

—

ik - (ecp€) exp(ik - x — iwt) = 0,
( 4) ( ) (15)
ik - (ppoH) exp(ik - x — iwt) = 0,

which means that both the electric and the magnetic amplitude vectors & and H must be

perpendicular to the wave direction k. Thus, the electromagnetic waves are transverse waves.


http://web2.ph.utexas.edu/~vadim/Classes/2026s/Maxwell.pdf

Next, the other two Maxwell equations (10) and (11) become

ik x £ exp(ik - x — iwt) = ~+iw(puoH) exp(ik - x — iwt), (16)
ik X H exp(ik-x — iwt) = —iw(ecp€) exp(ik - x — iwt), (17)

and hence
kx&= +wﬁ{ﬁb0ﬁ, kxH = —%5, (18)

where k is the unit vector in the directions of k. Note that in both egs. (18)

w 1

— = wave speed v = —— (19)
k| V/E€0 L0
hence
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for the same wave impedance
7 = JHHO (20)
€€Q

Consequently, egs. (18) become
. . A 1 -
kx€& = +7ZH, kxH = —28, (21)

where the two equations are equivalent to each other, provided both amplitude vectors £
and H are transverse to the wave’s direction k. Indeed, for a unit vector k and the two

amplitude vectors L k we have

S — — A~ —

kx (kx&) = -,  kx(kxH) = —H, (22)
and hence
kx& = +Z7—Z
+€ = ~kx (kx&) = —ZkxH (23)

| <=



The bottom line is, the independent amplitudes of a plane EM wave comprise a complex
vector & in the 2D plane transverse to the wave direction k. Given such an electric amplitude

vector, the magnetic amplitude vector obtains as

1

H = +=-kx& (24)

N

where Z is the wave impedance (20) of the medium in which the wave propagates. In

particular, the vacuum has wave impedance

1
Zewe = JE = iy = — ~ 377 Q. (25)

€0 ceQ

Note units: in MKSA unit system, the electric tension field E — and hence the electric
amplitude £ — is measured in V/m (Volts per meter), while the magnetic intensity field
H — and hence the magnetic amplitude H — is measured in A/m (Amperes per meter).
Consequently, the ratio Z of these amplitudes is measured in V/A = ), Volts per Ampere
AKA Ohms. Thus the wave impedance of a medium WRT to the EM waves has the same
dimesionality as the electric resistance or impedance of a circuit. In particular, Z(vacuum) ~

377 Q.

Now consider the energy density of the wave,

u:%E-D+%H-B:?E2+%H2. (26)

Earlier in class we saw that for a harmonic AC current and voltage
I(t) = Re(lpe™"), V() = Re(Vpe ™), (27)
the time-averaged electric power is
(P) = (IV) = 3Re(ljVy) = 3Re(IpVy)- (28)

Likewise, in a harmonic plane wave
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<E2> = %Re(g*-g) = %)5‘2 and <H2> —



hence time-averaged energy density of the wave is

o P
&l + H

<u>:@ 2 HHo
4 4

(30)

Moreover, the two terms on the RHS here are equal to each other, just like in a mechanical
wave the time-averaged kinetic energy is equal to the time-averaged potential energy. Indeed,

in light of the relation (24) between the electric an the magnetic amplitudes,
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= ‘5)2 {( since £l R» (31)
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hence
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1 #H £l = (ua). (32)

(Umag) =
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Consequently, in terms of the electric amplitude g , the net time-averaged energy density of

the plane EM wave is

2
E

(33)
Next, the energy flow density of the plane wave, which obtains from the Poynting vector
S = E x H. (34)

For the harmonically oscillating electric and magnetic fields, the time-average of this Poynt-

ing vector is related to the electric and magnetic amplitudes as
(S) = LRe (5 x ﬁ) , (35)

where in light of the relation (24) between the electric and the magnetic amplitudes of the



wave

ExH = & x(kx€) = L(k(E-8) ~ € K) = _(k

~ 5‘2 - 0), (36)

where the last equality follows from (£*-k) = (£ -k)* = 0. Consequently, the time-averaged

energy flow density of the plane EM wave is

"
(S) = %k. (37)

Taking the ratio of this energy flow density to the energy density (33), we get

(S) _ IEPRz 1 v (38)
(u) (eco/2)|E]2  Zeeo /€0 fifto e
and therefore
<S> = <u> Vwave - (39)

In other words, the energy of the plane EM wave moves in space with exactly the same

velocity vector vyave = vk as the phase fronts

x-planes where k- x — wt = const. (40)



Polarization

Both electric and magnetic fields of a plane EM wave are linearly related to the electric
amplitude vector £ , which is a complex vector in the 2D plane L to the wave direction k.
Hence, all superpositions of waves with the same frequency w and wave vector k follow from

the superpositions
gnet = 041(‘3 + 04252 (41)

of such 2D complex vectors. In this section, we shall see how it works, and how to decompose
a general amplitude vector & into two independent wave polarizations. But to simplify our
notations, let’s focus on the waves traveling in the positive z direction, k = (0,0,+1).

Consequently, the amplitude vectors of all such waves have form
£ = (£:,&,,0) (42)

with 2 independent complex components £, and £,. Depending on the relative phases — and
also relative magnitudes — of these two components, we EM wave can be linearly polarized,
circularly polarized, or elliptically polarized.

Linear polarizations

Linear polarizations (AKA planar polarizations) of the EM waves obtain when the com-
plex amplitudes &, and &, have the same phase (up to a sign). In general, the linearly

polarized waves have
Ex = &y X cosg, Ey = & xsing (43)
for some real angle ¢, so when the electric field oscillates in time and space,
E(z,t) = Re(Eek=mh), (44)
we get
E(z,t) = (cos¢,sing,0)* Re (50 eikz*iwt)
= |&| * (cos ¢, sin ¢, 0) * cos(kz — wt + 6) (45)

where ¢ = arg(&p).

Thus, in a linearly polarized wave, the electric field always points in the same direction



(cos ¢,sin ¢, 0) (modulo the overall sign), namely along the line in the (z,y) plane making

angle ¢ with the z axis,

direction of E

That’s why such polarizations are called linear. The same polarizations are called planar
after the shape of the 3D plot of the electric wave E(z) (for any fixed time ¢): Such a plot is

restricted to a single 2D plane, spanning the z axis and the red line on the above diagram,

for example fhis plof].

As to the magnetic field of a linearly polarized EM wave,

— ]_ A~ —
H = -kx€& = é(0,0,1) X (cos ¢,sinp,0) = ) (—sin ¢, + cos ¢, 0), (47)
Z Z Z
hence
H(z,t) = @ * (sin ¢, + cos ¢, 0) x cos(kz — wt + 9). (48)

In other words, the magnetic fields oscillates with the same phase as the electric field, but
its direction is rotated 90° counterclockwise (in the (z,y) plane) from the electric field’s

direction. Here are snapshots of the electric and the magnetic fields at two instances of time:

y y
A A
. H(t) jiﬂ(tl)

x (49)
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Note: on this diagram, the +z direction of the wave is towards your face, that’s why the

magnetic field points 90° to the left the electric field. If you were looking at the field from


https://upload.wikimedia.org/wikipedia/commons/c/c8/Linearly_polarized_wave_-_45_degrees.gif

the opposite direction of the wave’s source, the magnetic field would point 90° to the right

of the electric field. [I'his web pagd has an animated 3D diagram that clarifies the relative

directions of the two fields.

Circular polarizations

In a circularly polarized wave, the complex amplitudes &, and &£, have similar magnitudes

but their phases differ by 90°, £, = +i€, and hence

- & i
£ = \/5(1,i,0). (50)

Consequently, the z and the y components of the electric field E(z,t) oscillate with phases
differing by 90°:

|Eo|

E.(z,t) = —= x cos(kz — wt + ), (51)
V2
Ey(z,t) = % x cos(kz —wt+0+ %)
ol

= :F% x sin(kz — wt + 9). (52)

Thus, the electric field E keeps constant magnitude |E| = |&|/v/2, but its direction moves

in a circle in the (z,y) plane,

direction(E) = +(wt — kz — ). (53)

Here is a BD animated illusfration from wikipedid.

The two circular polarizations — one with 51 x (1,+4,0) and the other with £ x
(1, —4,0) — correspond to the two opposite direction of the E field’s rotation. But which

direction of rotation we call ‘right’ and which we call ‘left’ depends on a convention:

e In both conventions, we look at the electric field vector E(t) as a function of time at

a fixed location x.

e In the Optics convention, we look at the incoming wave — the unit wave vector k

points into your eye.


https://holocenter.org/what-is-holography/polarization
https://en.wikipedia.org/wiki/Circular_polarization#/media/File:Circular.Polarization.Circularly.Polarized.Light_Left.Hand.Animation.305x190.255Colors.gif

e But in the Particle Physics convention, we look at the outgoing wave, with the k vector

pointing away from you.

* Consequently, the same physical direction of rotation that appears clockwise (right) in
one convention would appear counterclockwise (left) in the other convention, and vice

verse.

In particular, for the wave traveling in the +z direction, looking at the (x, y) plane drawn
on a horizontal piece of paper from above corresponds to the Optics convention: the wave
travels up, towards your eyes. In this convention, the positive direction of angles in the
(x,y) plane is counterclockwise (left), while eq. (53) tells us that the direction of E moves
in the positive direction for 51 o (1,4+4,0) and in the negative direction for £ (1, —14,0).
Consequently,

In the Optical convention:
£, o (1,+4,0) is the left circular polarization, (54)

£ (1,—1,0) is the right circular polarization.

And of course,

In the Particle Physics convention, it’s the other way around:
ng x (1,41,0) is the right circular polarization, (55)

£ (1,—1,0) is the left circular polarization.

The reason for this particular convention in the particle physics is that a circularly polarized

plane EM wave corresponds to a beam of photons of definite helicity
A k. Spin (in units of 7). (56)

For a photon, the two allowed values of its helicity are +1 and —1 (but not 0), and its
convenient to call a photon with A = +1 as polarized right while a photon with A = —1 as

polarized left.
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Altogether, we have the following correspondence table for the circular polarizations:

A Particle Optics Equation for £

+1 right left kxE =+E,

—

—1 left right  ikx& =&

The last column here helps to write down the electric amplitudes & for the 2 circular po-
larizations for a general direction k of the plane wave: The two Es are eigenvectors of a
Hermitian linear operator & = ik x & for its two non-zero eigenvalues A = +1. In particular,

for k = (0,0, 1), the eigenvector equation becomes
i(0,0,1) x (&2, &), &) = (—i&y, +i&,0) = £(&:, &, E2) (57)

whose eigenvectors are indeed

& = & (1,+4,0). (58)

S

Elliptic polarizations

For generic £, and &, amplitudes of a plane wave — two complex numbers of different
magnitudes and different phases, — the E(t) vector moves along an ellipse in the (x, y) plane,

so such polarizations are called elliptic. For example, consider

= &o )
£ = % (1, 4+iv/1-120 59
Vomrel ) (59)
and hence
_ &%l
E,(z,t) = —— X cos(wt — kz — §),

V2 —1r?

Ey(z,t) = £V/1—12 X \/% x sin(wt — kz — §).

(60)

As a function of time (at a fixed z), the electric field vector with these components indeed
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follows an ellipse of eccentricity 7 in the (x,y) plane:

- -
-

e

Y 2 (61)

R

For this particular ellipse, its major axis is along the x axis while the minor axis is along the

y axis, but one may easily generalize this example to any other axis direction by taking

E = % * ((cos¢, sing,0) + iv/1 —r2 % (—sin¢,+cos¢,0)). (62)
—T

Indeed, any complex 2D vector € = (&;,&,,0) can be written in the form (62) for some
overall complex amplitude &, a real angle ¢, and a real eccentricity r between 0 and 1. For
r = 1 we get a linear polarization in the direction ¢, for r = 0 we get a circular polarization,

and for any other 0 < r < 1 we get an elliptic polarization.

Polarization bases

Consider superpositions of two (or several) EM waves of the same frequency w traveling
in the same direction k (and hence having the same wave vector k = (w/v)k). Since EM
fields of a plane wave depend linearly on the electric amplitude vector g , superposition of

all fields follow from superposition of these amplitude vectors:

IF gnet = 04151 + a2$
THEN  Epet(x,t) = a1E1(x,t) + agEa(x,t) (63)
)

AND Hp(x,t) = aiHi(x,t) + aoHa(x,t).

So let’s take a closer look at the linear space of the amplitude vectors £
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For a given direction k of the plane waves, their electric amplitudes £ are complex two-
dimensional vectors in the plane L k. Consequently, there are two independent polarizations

e; and e9, and all the amplitudes are linear combination of these polarizations,

—

any & = aje; + ages for some complex aq and as . (64)

For example, for a wave traveling in the 4z direction, we may use
e: = (1,0,0), e, = (0,1,0) € = (£:,&,,0) = Ever + Eyey - (65)
However, there are infinitely many other bases of a complex 2D vector space. Indeed, take

any 2 complex unit vectors that are L k and L to each other, and they would form a basis:

~

IF ej-e =e-e;p =1 AND k-ej = k-ey = ef-e; = 0

THEN for any Elk: € = al1e] + ases

where a1 = e -& and an = € - E. (66)
In particular, any pair of real unit vectors e; L ey (in the plane L R) forms a basis of linear
polarizations. Indeed, a plane wave with amplitude aje; for a real vector e; is linearly
polarized, and so is the wave with amplitude agez, but their superposition may have any
polarization we like, linear, circular, or elliptic, depending on the complex coefficients a; and
ag. Earlier in these notes, we have seen how this works in the e, e, basis (for wave moving
in the z+ direction), but it would work in exactly the same way for any other pair of linear
polarizations L to each other. For example, for the same wave direction we may use a basis

of (ey, ey ) for some coordinate axes (2/,3') rotated through some angle relative to (z,y):

Y
/
Yy x!
AN A A
e
Y ex/
ey/ =
e, any & = &Ege;p + Eyey
> b ———> T (67)
// \\ = Sx/ex/ + Ey/ey/,
/ AN
7/ AN
7/ AN
7/ N
7 *
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The 2 circular polarizations

e — %(1,“,0), o — %(1,—2’,0), (68)

also form a basis of all polarizations. For example, any linear polarization is a superposition

of the two circular polarizations as

&o

- y S .

E = &lcosg,sing,0) = —— e Pe, + —eti0e_ 69

— note coefficients of equal magnitudes but different phases, — while for any elliptic polar-
ization one generally has

£ = (et -Ee. + (e -Ee_ (70)

where the two coefficient generally have both different magnitudes and different phases.

In principle, one may also use a pair of elliptic polarizations as a basis, but this is rarely
done. In practice, one chooses a basis according to the available filters selecting a particular
polarization or separating two polarizations from each other, and most such filters select

either linear of circular polarizations.

Stokes parameters.

For EM waves other than radio waves or microwaves, the electric amplitude vectors g

cannot be directly measured. Instead, all we have is the wave’s intensity

€€p

€€
27

£ =
€] 57

I =18 = (E*-E). (71)

However, by measuring intensities of an EM wave after letting it go through several polarizing
filters, we may reconstruct the complex amplitude vector £ up to an overall phase. To see
how this works, let’s run the wave through 6 different polarizing filters — one filter at a time

rather than a series of all 6 filters, — and measure the intensities of the filtered waves:
e Linear polarizing filters in x and y directions.

e Linear polarizing filters in 2’ and 3’ direction at 45° to the z and y axes.
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e Left and Right circular polarizing filters.

Let I, Iy, I, Iy, I1,, Ir denote the intensities of the wave after going through the respective

filters, while

Iy = I + I,

is the intensity of the un-filtered wave.

= [:E’ + [y/ = [L —+ [R (72)

Now let’s introduce the Btokes parameters of the

wave:
27
So = — x Iy,
€€o
27
Sl = ; X (Ix—ly),
220 (73)
Sy = 22 (I, — L.
2 €€o X ( T Yy )7
27
S3 = — x (I —Ip).
€€o
In terms of the wave’s electric amplitude vector
E = Eer + Egey = Evew + Eyey = Erer + Egen, (74)
— where
E,EE Er F i€
Evr oy = v, & = 2 75
'y \/ﬁ LR \/5 ( )
— the Stokes parameters correspond to:
So = 1EF = &P + 1§
S1 = &P — 1§
Sy = &w* — |y = &+ &P — §l& - &7
T y 21cz T Cy glcx — Cy (76)

= 2Re(£;€,),

S3 = |E* — |€R|?

= 2Im(&E,).

= %|5x_i5y|2 - %|5x+i5y|2

From these parameters, one may easily obtain the magnitudes |&;| and |&,| as well as the

relative phase between the &, and the £, — and hence the whole complex electric amplitude

vector € up to an overall phase, E = €.
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https://en.wikipedia.org/wiki/Stokes_parameters

In Quantum Mechanics, the spin states of a spin = % particle or an atom work very similar
to the polarization amplitudes of an EM wave. The quantum analogues of the polarizing
filters are the Stern—Gerlach devices separating the atom beam according to the x, y, or
z components of its magnetic moment being +up or —up (up being the Bohr magneton

eh/2m.), while the analogies of the Stokes parameters are the

Ny = net intensity of the atom beam,

Ny = N(m;=+wp) — N(m, = —p),
Ny = N(mgz = +mw) — N(mg = —mp),
N3 = N(my =+m) — N(my = —pp).

Assuming all the atoms in the beam have the same spin state, we may reconstruct it from
these 4 Stokes-like parameters up to an overall phase. Moreover, these 4 parameters can tell

us whether all the atoms are indeed in the same spin state:

All atoms are in the same spin state iff N; + Ny + N3 = Ny,

(78)
otherwise Ni + Ny + N3 < Ny.
Likewise, for a coherent light wave — such as emitted by a laser — with a definite
amplitude vector £, the 4 Stokes parameters (76) are related as
ST + Sy + S3 = 5. (79)

But most light sources emit incoherent light — a random superposition of nanosecond-long
wave trains with varying frequences and amplitudes. Even the so-called monochromatic
light — obtained by filtering a white or whitish light through a narrow frequency filter —
comprises wave trains with similar frequecies but different amplitudes. And quite often,
the amplitudes of different wave trains have different polarizations, so the light beam as a

whole is un-polarized or partially polarized. For such light, instead of eq. (79) for the Stokes
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parameters we have the inequality
S1 + S22 + 53 < Sp, (80)

and the degree of polarization obtains as

S1+ S + S3

. (31)

p:

A perfectly polarized light beam has p = 1, a completely unpolarized beam has p = 0, and
a partially polarized beam has 0 < p < 1.
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