
REFLECTION AND REFRACTION OF PLANE EM WAVES

When an electromagnetic wave hits a boundary between different materials, some of

the wave’s energy is reflected back while the rest continues on through the second material,

although the direction of the continuing wave may be somewhat different from the original

wave’s; this bending of the wave’s direction is called the refraction. In these notes we shall

study the reflection and the refraction of EM waves in some detail, specifically:

• The kinematic relations between the directions of the incident, the refracted, and the

reflected waves.

• The dynamical relations between the intensities, the phases, and the polarizations of

all the waves.

Directions of the waves

The kinematic relations are independent on the waves’ nature: The directions of the

incident, the refracted, and the reflected waves obey the same rules for the electromagnetic

waves, the sound waves, the wave functions of quantum particles, or any other kinds of a

linear harmonic waves. So to keep our analysis as general as possible, consider plane waves

of the form

ψ(r, t) = ψ0 exp(ik · r− iωt) (1)

where ψ can be any physical quantity governed by the wave equation. For simplicity, let’s

assume a flat boundary between two uniform media with different wave speeds v1 = c/n1

and v2 = c/n2 but no wave attenuation on either side, thus real n1 and n2. The incident

wave, the refracted wave, and the reflected wave are all plane waves with the same frequency

omega but with different directions of the respective wave vectors k:

ψincident = ψ1 exp(ik1 · r− iωt), (2)

ψrefracted = ψ2 exp(ik2 · r− iωt), (3)

ψreflected = ψ3 exp(ik3 · r− iωt), (4)
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or graphically
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At the boundary between the two media, the waves satisfy some kind of a linear condition,

@z = 0,
∑

j=1,2,3

Aj × ψj exp(ikj,xx+ ikj,yy − iωt) = 0. (6)

The coefficients A1, A2, and A3 here may depend on all kind of things — on the nature of

the waves in question, on the properties of the two media, on the directions of the waves, on

their polarizations (if appropriate), etc., — but they do not depend on the (x, y) coordinates

of the boundary point. Therefore, to allow the boundary condition (6) to hold for all (x, y),

the (x, y)-dependent phases exp(ikxx + ikyy) must be the same for all three waves — the

incident, the refracted, and the reflected, — which means

k1,x = k2,x = k3,x and k1,y = k2,y = k3,y , (7)

or in vector notations

k
‖
1 = k

‖
2 = k

‖
3 . (8)

The immediate consequence of this relation is that the wave vectors k1, k2, k3 of all 3 waves

must lie in the same plane ⊥ to the boundary; this plane is called the plane of incidence.
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Now consider the directions of the wave vectors k1, k2, k3 within the plane of incidence.

In terms of the angles α, β, and γ on the diagram (5),

k
‖
1 = k1 × sinα, k

‖
2 = k2 × sin β, k

‖
3 = k3 × sin γ,

where the magnitudes k1, k2, and k3 follow from the frequency ω and the wave speeds in the

respective media, thus

k1 =
ωn1
c

, k2 =
ωn2
c

, k3 =
ωn1
c

; (9)

note that the reflected wave propagates on the same side as the incident wave but the

refracted wave is on the other side. Consequently, eq. (8) tells us that

n1 × sinα = n2 × sin β = n1 × sin γ, (10)

and therefore:

1. The angle of reflection is equal to the angle of incidence, γ = α.

2. The angle of refraction β is related to the angle of incidence α by the Snell’s Law,

n1 × sinα = n2 × sin β. (11)

Historical note: n is called the refraction index of a material precisely because of this

formula. Back in early 17th century when the Snell’s law was discovered (or rather re-

discovered in Europe, see the Wikipedia page on the subject for the history), people didn’t

know that light was a wave and had no idea of its speed. The relation n × v = c = const

between the light speed in a material and its refraction index was derived only in 1678, by

Christiaan Huygens who developed the wave theory of light.
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Total internal reflection.

When a wave coming from the side with the larger refraction index strikes the boundary

at a shallow angle, we may have n1 × sinα > n2. In this case, the Snell’s Law (11) cannot

be satisfied for any angle of refraction β, so the refraction does not happen at all; instead,

we have total internal reflection of the wave. But this does not mean the complete absence

of EM fields behind the boundary; instead, there is the evanescent wave

ψevanescent = ψ2 exp(ik2xx+ ik2yy)× exp(−κ2z)× exp(−iωt), for z > 0 (12)

which does not propagate in the z direction but decays with z. The evanescent wave (12) is

the analytic continuation of the propagating refracted wave exp(ik · r) to the complex wave

vector

k2 = (k2x, k2y, iκ2); (13)

this wave obeys the wave equation

(

∇2 +
ω2n22
c2

)

ψevanescent = 0 (14)

provided

(complex k2)
2 = k22x + k22y − κ22 =

ω2n22
c2

. (15)

Since

k22x + k22y = k21x + k21y = k21 sin
2 α =

ω2n21 sin
2 α

c2
, (16)

the attenuation rate of the evanescent wave is

2κ2 =
2ω

c
×
√

n21 sin
2 α − n22 . (17)

For example, the yellow light of frequency ω = 3.5 × 1015 s−1 striking glass-air boundary

(nglass = 1.5 vs. nair ≈ 1) from the glass side at the α = 60◦ angle is totally reflected back

to the glass, while the evanescent wave in the air attenuate at the rate 2κ2 ≈ 19× 106 m−1:

within one micron of depth, it decreases in power by 8 orders of magnitude!
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A good way to detect the evanescent wave beyond the total integral reflection is to

put another boundary very soon after the first, with a gap between them no wider than a

few/κ2. For example, take 2 parallel pieces of glass separated by 0.1 µm of air, and let the

light coming from one glass piece suffer total integral reflection at the glass-air boundary.

This total internal reflection sets up the evanescent wave in the air gap, and once this wave

reaches the other glass piece, some of it goes through and becomes an ordinary propagating

wave in the other piece:

incident reflected

evanescent

recaptured

Reflection and Refraction Coefficients for EM Waves

Now we turn our attention to the dynamical issues of intensities and phases of the

reflected and the refracted waves relative to the incident wave. These issues depend on the

specific nature of the wave, so let’s focus on the plane electromagnetic waves

Ej(r, t) = ~Ej exp(ikj · r− iωt), Hj(r, t) = ~Hj exp(ikj · r− iωt), (18)

where j = 1, 2, 3 denotes respectively the incident, the refracted, and the reflected waves,

while the amplitudes ~Ej and ~Hj are complex vectors ⊥ to the respective wave vectors kj .
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Also, for each wave

~Hj =
1

Zj
k̂j × ~Ej (19)

where k̂j is the unit vector in the direction of the kj and Zj =
√

µjµ0/ǫjǫ0 is the wave

impedance at the appropriate side of the boundary.

The Head-On Case

Let’s start with a particularly simple case of the head-on incident wave, α = 0. Conse-

quently, the refraction and the reflection angles also vanish, hence

k1 = +
n1ω

c
ẑ, k2 = +

n2ω

c
ẑ, k3 = −n1ω

c
ẑ. (20)

Also, the electric and the magnetic fields of all three waves are ⊥ ẑ so they lie in the (x, y)

plane, which means that both E and H fields must be continuous across the boundary at

z = 0,

E(z = +0) = E(z = −0), H(z = +0) = H(z = −0). (21)

On the z < 0 side we have a superposition of the incident and the reflected waves,

E(z, t) = ~E1 exp
(

iω
(n1
c
z − t

))

+ ~E3 exp
(

iω
(

−n1
c
z − t

))

−−−→
z→−0

(

~E1 + ~E3
)

exp(−iωt)
(22)

and likewise

H(z, t) = ~H1 exp
(

iω
(n1
c
z − t

))

+ ~H3 exp
(

iω
(

−n1
c
z − t

))

−−−→
z→−0

(

~H1+ ~H3

)

exp(−iωt),
(23)

while on the z > 0 side we have just the transmitted (refracted) wave

E(z, t) = ~E2 exp
(

iω
(n2
c
z − t

))

−−−→
z→+0

~E2 exp(−iωt),

H(z, t) = ~H2 exp
(

iω
(n2
c
z − t

))

−−−→
z→+0

~E2 exp(−iωt).
(24)
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Consequently, in terms of the amplitudes, the boundary conditions (21) become

~E1 + ~E3 = ~E2 ,
~H1 + ~H3 = ~H2 .

(25)

At the same time, the electric and the magnetic amplitudes of the 3 waves are related as

~H1 = +
1

Z1
ẑ× ~E1 , ~H2 = +

1

Z2
ẑ× ~E2 , ~H3 = − 1

Z1
ẑ× ~E3 . (26)

so in terms of the electric amplitudes, the magnetic boundary condition (25)(b) becomes

1

Z1
ẑ×

(

~E1−~E3
)

=
1

Z2
ẑ× ~E2 (27)

and hence

~E1 − ~E3 =
Z1

Z2

~E2. (28)

Together with the top equation (25)(a), this gives us two linear equations for the three electric

amplitudes. Solving these equations, we get the amplitude ratios called the transmission

coefficient t and the reflection coefficient r:

~E2 = t~E1 for t =
2Z2

Z1 + Z2
,

~E3 = r~E1 for r =
Z1 − Z2

Z1 + Z2
.

(29)

Note that for the head-on EM waves, the transmission and the reflection coefficients do

not depend on the wave’s polarization: it can be linear in any direction, circular, elliptic,

whatever. This follows from the rotational symmetry in the (x, y) plane (which makes for

the same t and r for any linear polarization) and the superposition rule (any polarized wave

is a sum of two linearly polarized waves in ⊥ directions).

However, for the waves coming at a non-zero incident angles α 6= 0 there is no rotational

symmetry so the transmission and the reflection coefficients become polarization-dependent.
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However, thanks to the reflection symmetry ⊥ to the incidence plane, there is a clear polar-

ization eigenbasis for calculating t and r, namely 2 mutually ⊥ planar polarizations: (1) ~E
normal to the incidence plane, and (2) ~E within the incidence plane. We shall work these

two cases in detail in the next two sections of these notes.

Another noteworthy feature of the transmission and reflection coefficients (29) is that

they are real; moreover, t is always positive while r is positive for Z2 < Z1 but negative

for Z2 > Z1. Consequently, the transmitted wave is always in-phase with the incident

wave, while the reflected wave is in-phase for Z2 < Z1 but of precisely opposite phase for

Z2 > Z1. This behavior is similar to the wave on a string reflected from the place where

the string changes its density: if the second string has a lower density — and hence lower

wave impedance — then the first string, then the reflected wave is in-phase with the incident

phase; but if the second string has a higher density — and hence higher wave impedance —

then the reflected wave has an opposite phase from the incident wave.

Next, consider the intensities of the incident, the transmitted, and the reflected waves,

i.e. the powers (per unit of cross-sectional area) carried by the waves. In general, the intensity

of a plane EM wave is

I =
|~E|2
2Z

, (30)

so for the waves in question

I1 =
|~E1|2
2Z1

, I2 =
|~E2|2
2Z2

, I3 =
|~E3|2
2Z1

, (31)

hence

the transmissivity T
def
=

I2
I1

= |t|2 × Z1

Z2
, (32)

and the reflectivity R
def
=

I3
I1

= |r|2 × 1. (33)

In light of eqs. (29) for the transmission and the reflection coefficients, we get

T =
4Z1Z2

(Z1 + Z2)2
, R =

(Z1 − Z2)
2

(Z1 + Z2)2
. (34)
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Note that both the transmissivity and the reflectivity are positive and add up to one,

T + R = 1. (35)

Physically, this means that the power of the incident wave is divided between the transmitted

and the reflected waves, but the net power is conserved. In the absence of absorption, this

should always be the case.

I would like to conclude this section with Fresnel’s formulae for the transmission and

reflection coefficients — and hence the transmissivity and the reflectivity — in terms of the

refraction indices n1 and n2 of the two media rather than their wave impedances. Fresnel’s

formulae work only for the non-magnetic media with µ ≈ 1, but since most transparent

media are non-magnetic, that’s OK.

For the non-magnetic media, the refraction index is simply n ≈ √
ǫ while the wave

impedance

Z ≈ Z0 ≈ 377 Ω√
ǫ

≈ Z0

n
. (36)

So is the materials on both sides of the boundary are non-magnetic, we have

Z1 =
Z0

n1
and Z2 =

Z0

n2
. (37)

Consequently, in terms of the two refraction indices, the transmission and the refraction

coefficients become

t =
2Z2

Z1 + Z2
=

2n1
n2 + n1

,

r =
Z1 = Z2

Z1 + Z2
=

n2 − n1
n2 + n1

,

(38)

and hence the transmissivity and the reflectivity

T =
4Z1Z2

(Z1 + Z2)2
=

4n2n1
(n2 + n1)2

,

R =
(Z1 − Z2)

2

(Z1 + Z2)2
=

(n2 − n1)
2

(n2 + n1)2
.

(39)

For example, at the boundary between the air (with n1 ≈ 1) and the glass (with n2 ≈ 1.5),

the reflectivity is 4% while the transmissivity is 96%.
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The Oblique Case

Now let’s turn our attention to the refraction and reflection of the EM waves hitting the

boundary at oblique angles α 6= 0. Let’s choose our coordinates so the boundary is the (x, y)

plane while the incidence plane is (x, z). Then the wave vectors k1,2,3 of all three (incident,

refracted, and reflected) waves have ky = 0. In more detail,

k1 = n1(ω/c) ∗
(

+ sinα, 0, +cosα),

k2 = n2(ω/c) ∗
(

+ sinβ , 0, +cos β),

k3 = n1(ω/c) ∗
(

+ sinγ , 0, − cos γ) 〈〈 for γ = α 〉〉.

(40)

For simplicity, let us assume the media at both sides of the boundary are non-magnetic and

have real refraction indices n1 =
√

ǫ1(ω) and n2 =
√

ǫ2(ω) at the frequency of the wave,

hence

Z1 =
Z0

n1
and Z2 =

Z0

n2
. (41)

Consequently, the relations between the electric and the magnetic amplitudes of the three

(incident, refracted, and reflected) waves become

Z0
~H1 = n1 k̂1 × ~E1 , Z0

~H2 = n2 k̂2 × ~E2 , Z0
~H3 = n1 k̂3 × ~E3 . (42)

We also have relations between amplitudes of different waves stemming from the boundary

conditions at z = 0. In particular, since the media on both sides of the boundary are

non-magnetic, all components of the magnetic field H(ẑ, t) must be continuous across the

boundary. In terms of the incident and the reflected waves at z ≤ 0 and the refracted wave

at z ≥ 0, this means

H1(r, t) + H3(r, t) = H2(r, t) @z = 0. (43)

For the three plane waves with all ky = 0 this means

~H1 exp(ik1xx− iωt) + ~H3 exp(ik3xx− iωt) = ~H2 exp(ik2xx− iωt), (44)

and since k1x = k2x = k3x, all exponentials here are the same and we are left with the
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amplitude equation

~H1 + ~H3 = ~H2 . (45)

As to the electric field, ǫ1 6= ǫ2 means different boundary conditions for the Ex, Ey compo-

nents parallel to the boundary versus Ez components normal to the boundary: the Ex, the

Ey, and the Ez × ǫ must be continuous across the boundary. In terms of the three waves,

this means

@z = 0 :



















E1x(r, t) + E3x(r, t) = E2x(r, t),

E1y(r, t) + E3y(r, t) = E2y(r, t),

n21

(

E1z(r, t) + E3z(r, t)
)

= n22E2z(r, t),

(46)

hence in terms of their amplitudes

E1,x + E3,x = E2,x , E1,y + E3,y = E2,y , n21
(

E1,z + E3,z
)

= n22 E2,z . (47)

The solutions of the boundary conditions (45) and (47) depend on the polarization of

the incident wave. Below, we consider 2 orthogonal linear polarizations: (1) the electric field

~E1 normal to the plane of incidence, and (2) the electric field ~E1 lying within the plane of

incidence. Any other polarization of the incident wave — be it linear, circular, or elliptic —

would be a linear combination of these two, so the answers for the appropriate reflected and

refracted waves would follow by linearity.

Polarization Normal to the Plane of Incidence

For this polarization, the electric amplitude vector ~E1 of the incident wave is normal to

the plane of incidence, so the reflected and the refracted waves should also have their electric

amplitude vectors ~E2 and ~E3 be normal to the plane of incidence. On the other hand, the

magnetic amplitude vectors ~H1, ~H2, and ~H3 of the three waves must be ⊥ to the respective
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electric amplitudes, so they should lie within the plane of incidence. Graphically,

x

z

k1

~H1

~E1

k2

~H2

~E2

k3

~H3

~E3

γα

β

(48)

or in components

~E1 = E1
(

0,+1, 0
)

, (49)

Z0
~H1 = E1n1

(

− cosα, 0,+ sinα), (50)

~E2 = E2
(

0,+1, 0
)

, (51)

Z0
~H2 = E2n2

(

− cos β, 0,+ sinβ), (52)

~E3 = E3
(

0,+1, 0
)

, (53)

Z0
~H3 = E3n1

(

+cos γ, 0,+ sin γ). (54)

Plugging all these components into the boundary conditions (45) and (47), we arrive at three

non-trivial equations

[Ey match] E1 + E3 = E2 ,

[Hx match] n1(− cosαE1 + cos γE3) = n2(− cos βE2),

[Hz match] n1(sinαE1 + sin γE3) = n2(sin βE2).

(55)

However, in light of the reflection law γ = α and the Snell’s law n1 sinα = n2 sin β, the third

equation here is equivalent to the first, so there are only 2 independent equations for the two
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unknown amplitudes E2 and E3, namely

E2 − E3 = E1 and
n2 cos β

n1 cosα
E2 + E3 = E1 . (56)

The coefficient in the second equation here can be simplified as

n2 cos β

n1 cosα
=

n2 sin β

n1 sinα

/

tan β

tanα
=

tanα

tan β
(57)

or restated in terms of the angle of incidence α and the refraction indices n1, n2 as

n2 cos β

n1 cosα
=

n2
√

1− sin2 β

n1 cosα
=

n2

√

1 − (n1/n2)2 sin
2 α

n1 cosα
=

√

(n2/n1)2 − sin2 α

cosα
. (58)

Hence, solving eqs. (56) for the amplitudes E2 and E3 as fractions of the incident wave’s

amplitude E1, we get the transmission coefficient

t
def
=

E2
E1

=
2 tanβ

tan β + tanα
=

2 cosα

cosα +
√

(n2/n1)2 − sin2 α
(59)

and the reflection coefficient

r
def
=

E3
E1

=
tan β − tanα

tan β + tanα
=

cosα −
√

(n2/n1)2 − sin2 α

cosα +
√

(n2/n1)2 − sin2 α
. (60)

Note that the transmission coefficient t is always positive — the refracted wave has the same

phase as the incident wave, — but the sign of the reflection coefficient seem to depend on

the n2/n1 ratio as well as the incidence angle α. Actually, it depends only on the n2/n1

ratio: For n2 > n1, r is negative for any α, and the reflected wave has the opposite phase

from the incident wave; but for n2 < n1, r is positive for any α which allows refraction, and

the reflected wave has the same phase as the incident wave.
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Beside the reflection and the transmission coefficients governing the respective waves’

amplitudes, there are related quantities called the reflectivity and the transmissivity which

compare the intensities of the reflected / transmitted waves to that of the incident wave. Or

rather, they compare the energy flux densities of the respective waves in the ±z direction

normal to the boundary, thus

reflectivity R = −Re(~E∗
3 × ~H3)z

Re(~E∗
1 × ~H1)z

(61)

and

transmissivity T = +
Re(~E∗

2 × ~H2)z

Re(~E∗
1 × ~H1)z

; (62)

by the energy conservation, they should always add up to one,

R + T = 1. (63)

In terms of the electric amplitudes of the waves,

R =
|~E3|2

|~E1|2
= |r|2, (64)

while

T =
|~E2|2n2 cos β
|~E1|2n1 cosα

= |t|2 × n2 cos β

n1 cosα
. (65)

where the extra n2/n1 factor comes from the magnetic amplitudes while the cos β/ cosα

factor comes from projecting the Poynting vector onto the z axis.

For the EM waves polarized normally to the plane of incidence, the reflectivity is

R =
(tanα− tanβ)2

(tanβ + tanα)2
=

(

cosα −
√

(n2/n1)2 − sin2 α

)2

(

cosα +
√

(n2/n1)2 − sin2 α

)2
(66)
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while the transmissivity is

T =
4 tanα tanβ

(tan β + tanα)2
=

4 cosα×
√

(n2/n1)2 − sin2 α
(

cosα +
√

(n2/n1)2 − sin2 α

)2
, (67)

and its is easy to verify that indeed R+T = 1. For general incidence angles α, these formulae

look somewhat messy, but for the waves hitting the boundary head-on (α = 0) they reduce

to what we saw in the ‘head-on’ section:

R(α = 0) =
(n1 − n2)

2

(n1 + n2)2
, T (α = 0) =

4n1n2
(n1 + n2)2

. (68)

Polarization Within the Plane of Incidence

This time, the incident wave has the electric amplitude vector ~E1 lying within the plane

of incidence, while the magnetic amplitude vector ~H1 — which is ⊥ to both ~E1 and k1 —

must be normal to it. Consequently, the reflected and the refracted waves should also have

their magnetic amplitudes ~H3 and ~H2 normal to the plane of incidence, while their electric

amplitudes ~E3 and ~E2 lie within the plane. Graphically,

x

z

k1

~E1

~H1

k2

~E2

~H2

k3

~E3
~H3

γα

β

(69)
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so in components

~E1 = E1
(

− cosα, 0,+ sinα
)

, (70)

Z0
~H1 = E1

(

0,−n1, 0
)

, (71)

~E2 = E2
(

− cos β, 0,+ sinβ
)

, (72)

Z0
~H2 = E2

(

0,−n2, 0
)

, (73)

~E3 = E3
(

+cos γ, 0,+ sin γ
)

, (74)

Z0
~H3 = E3

(

0,−n1, 0
)

. (75)

Plugging all these components into the boundary conditions (45) and (47), we arrive at three

non-trivial equations

[Hy match] n1(E1 + E3) = n2E2 ,

[Ex match] − cosαE1 + cos γE3 = − cos βE2 ,

[Ez match] n21(sinαE1 + sin γE3) = n22 sin βE2 ,

(76)

but similarly to what we have for the other polarization, the third of these equations becomes

equivalent to the first once we use the reflection law γ = α and the Snell’s law n1 sinα =

n2 sin β. This leaves us with two independent equations for two unknown amplitudes E2 and
E3,

n2
n1

E2 − E3 = E1 ,

cos β

cosα
E2 + E3 = E1 ,

(77)

whose solution gives us the transmission coefficient

t =
E2
E1

=
2n1 cosα

n1 cos β + n2 cosα
=

2n1n2 cosα

n1

√

n22 − n21 sin
2 α + n22 cosα

(78)

and the reflection coefficient

r = −E3
E1

=
n1 cos β − n2 cosα

n1 cos β + n2 cosα
=

n1

√

n22 − n21 sin
2 α − n22 cosα

n1

√

n22 − n21 sin
2 α + n22 cosα

. (79)

The overall minus sign here is a matter of convention; its appropriate for small α = γ angles,
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since in this regime the electric amplitude vectors E3 and E1 on the diagram (69) point in

the near-opposite directions.

Similar to the other polarization, the transmission coefficient t is always positive — the

transmitted (refracted) wave is always in-phase with the incident wave. But this time, the

sign of the reflection coefficient r does depend on the incidence angle α: It flips as the α

goes through the Brewster angle

αb = arctan
n2
n1

(80)

for which the reflection coefficient vanishes! Geometrically, this Brewster angle is defined by

the reflected and the refracted rays being ⊥ to each other, thus βb + γb = 90◦. Indeed, for

the incidence angle αb as in eq. (80), we have

cosαb =
1

√

1 + tan2 αb
=

n1
√

n21 + n22

, (81)

sinαb = tanαb × cosαb =
n2

√

n21 + n22

, (82)

sin βb =
n1
n2

× sinαb =
n1

√

n21 + n22

= cosαb , (83)

and hence

βb = 90◦ − αb = 90◦ − γb . (84)

And in the context of eq. (79),

n22 − n21 sin
2 αb = n22 − n21n

2
2

n21 + n22
=

n42
n21 + n22

, (85)

n1 ×
√

n22 − n21 sin
2 αb = n1 ×

n22
√

n21 + n22

= n22 ×
n1

√

n21 + n22

= n22 × cosαb , (86)
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and therefore

[the numerator of eq. (79)] = 0 for α = αb =⇒ r = 0. (87)

When the un-polarized light is reflected from some surface at the Brewster angle, only

the waves polarized normally to the incidence plane are reflected, but the waves polarized

withing the plane of incidence do not. Consequently, the light reflected at the Brewster angle

is 100%polarized!

For the other angles of reflections, both polarizations get reflected but with different re-

flection coefficients, so the reflected light is partially polarized. Consequently, an appropriate

polarizing filter can suppress the reflected wave more than the incident wave. This effect is

exploited by the anti-glare sunglasses. It also helps polarized antennas to focus on to the

direct radio or microwave signal while suppressing the echos of that signal reflected from the

ground or the ionosphere.

Summary

To summarize these notes, let me write down the transmissivity and the reflectivity of

the 2 polarizations of the EM waves:

• For the EM waves polarized normally to the plane of incidence,

R =

(

cosα −
√

(n2/n1)2 − sin2 α

)2

(

cosα +
√

(n2/n1)2 − sin2 α

)2
, (66)

T =
4 cosα×

√

(n2/n1)2 − sin2 α
(

cosα +
√

(n2/n1)2 − sin2 α

)2
. (67)

• For the EM waves polarized within the plane of incidence,

R =

(

√

(n2/n1)2 − sin2 α − (n2/n1)
2 cosα

)2

(

√

(n2/n1)2 − sin2 α − (n2/n1)2 cosα

)2
, (88)
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T =
4
√

(n2/n1)2 − sin2 α× (n2/n1)
2 cosα

(

√

(n2/n1)2 − sin2 α − (n2/n1)2 cosα

)2
. (89)

⋆ For the waves hitting the boundary head-on, there is no physical difference between

the two polarizations, and indeed both sets of formulae have the same α = 0 limit:

R(α = 0) =
(n1 − n2)

2

(n1 + n2)2
, T (α = 0) =

4n1n2
(n1 + n2)2

. (90)

To illustrate all these formulae, let me plot the reflectivities and the transmissivities of

the air-diamond boundary (going from the air with n1 = 1 to the diamond with n2 = 2.42)

as functions of the incidence angle α.
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The transmissivities:

α

T⊥, T‖
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Total internal reflection

Finally, let’s take another look at the total internal reflection and consider the amplitudes

of the reflected and the evanescent wave. Although calling t = E2/E1 the “transmission

coefficient” is a misnomer in this case, the Fresnel’s equations

t⊥ =
2 cosα

cosα +
√

(n2/n1)2 − sin2 α
, (59)

t‖ =
2(n2/n1) cosα

(n2/n1)2 cosα +
√

(n2/n1)2 − sin2 α
, (78)

continue to work, they simply need to be analytically continued to the imaginary square

roots. Likewise, the Fresnel’s equations for the reflection coefficient

r⊥ =
cosα −

√

(n2/n1)2 − sin2 α

cosα +
√

(n2/n1)2 − sin2 α
, (60)

r‖ =
(n2/n1)

2 cosα −
√

(n2/n1)2 − sin2 α

(n2/n1)2 cosα +
√

(n2/n1)2 − sin2 α
, (79)
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work just as well for the total internal reflection after a suitable analytic continuation. But

please note: the analytic continuation works for the transmission and reflection coefficients

for the amplitudes, but not for the transmissivity T = |t|2 and the reflectivity R = |r|2 for the
energy fluxes: taking a mod-square of an amplitude ratio breaks the analytic continuation.

If fact, for the total internal reflection |r|2 is always 1 — the entire energy of the incident

wave is reflected back. Indeed, making the analytic continuation of eqs. (60) and (79) explicit,

we get

r⊥ =
cosα − i

√

sin2 α − (n2/n1)2

cosα + i
√

sin2 α − (n2/n1)2
, (91)

r‖ =
(n2/n1)

2 cosα − i
√

sin2 α − (n2/n1)2

(n2/n1)2 cosα + i
√

sin2 α − (n2/n1)2
, (92)

which makes it obvious that |r⊥| = |r‖| = 1. On the other hand, for the total internal

reflection r is complex rather than real, so the reflected wave has a non-trivial phase shift

arg(r) relative to the incident wave.
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