
ELECTROMAGNETIC WAVES IN CONDUCTORS

Attenuation and Skin Effect

Consider a harmonic EM wave in a conducting material, so besides the displacement

current

Jd =
∂D

∂t
= −iωD = −iωǫǫ0E (1)

there is also the conduction current

Jc = σE. (2)

(The sigma here is the electric conductivity and has nothing to do with surface electric

charges.) The Maxwell–Ampere equation combines the conduction and the displacement

currents into a single net current

∇×H = Jnet = Jc + Jd , (3)

which follows from the electric field as

Jnet = σeff(ω)E (4)

where

σeff(ω) = σ − iωǫ0ǫ (5)

is the complex effective conductivity. It is also convenient to define the complex effective

relative permittivity

ǫeff(ω) =
iσeff(ω)

ωǫ0
= ǫ +

iσ

ωǫ0
, (6)

then we may write the Maxwell–Ampere equation as

∇×B = −iω
µǫeff(ω)

c2
E . (7)

Then combining this formula with the other Maxwell equations exactly as we did earlier in

class for the non-conducting media (cf. my notes on the subject, pages 3–4), we arrive at
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the EM wave equation
(

∇2 +
n2(ω)

c2
ω2

)

(

E

B

)

= 0 (8)

with a complex refraction index

n(ω) =
√

µǫeff(ω) =

√

µǫ +
iµσ

ǫ0ω
. (9)

The general solutions of the wave equation (8) with a complex n are analytic continu-

ations of solutions of the ordinary wave equation. In particular, taking an ordinary plane

wave moving in the +x̂ direction and analytically continuing to the complex n = n1 + in2,

we get

E(x, t) = ~E exp(ikx− iωt), H(x, t) = ~H exp(ikx− iωt), (10)

for k = nω/c, but since n is now complex, we also get complex

k = k1 + ik2, k1 =
n1ω

c
, k2 =

n2ω

c
. (11)

Consequently,

exp(ikx) = exp(ik1x)× exp(−k2x), (12)

which makes the wave (10) an attenuating wave

E(x, t) = ~E exp(ik1x− iωt) exp(−k2x), H(x, t) = ~H exp(ik1x− iωt) exp(−k2x); (13)

indeed, as the wave propagates in the +x̂ direction, it also gets weaker and weaker. In

particular, the intensity of the wave

I = 〈Sx〉 = 1
2 Re

(

~E∗ × ~H
)

= I0 exp(−2k2x) (14)

decreases with x at the exponential rate

α
def
= −d log I

dx
= 2k2 = 2n2

ω

c
. (15)
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Poor Conductor Limit

As an example of calculating the attenuation rate α = 2k2, consider a poor electric

conductor with

σ ≪ ωǫǫ0 . (16)

For such a material, the conduction current is much weaker than the displacement current;

nevertheless, it is this conduction current which leads to attenuation of the EM waves. In

terms of the complex effective permittivity, eq. (16) means

Im ǫeff =
σ

ωǫ0
≪ ǫ = Re ǫeff . (17)

and for such complex numbers

√
ǫeff ≈

√

Re ǫeff + i
Im ǫeff

2
√
Re ǫeff

. (18)

Consequently,

n2 = Im
(

n =
√
µǫeff

)

=
√
µ× σ/ωǫ0

2
√
ǫ

=

√

µ/ǫ

2ǫ0
× σ

ω
, (19)

and hence attenuation

α = 2n2(ω/c) =

√

µ/ǫ

ǫ0c
× σ = Zwave × σ

where

Zwave =

√

µµ0
ǫǫ0

=

√

µ/ǫ

cǫ0
(20)

is the wave impedance of the material (in the zero-conduction approximation). This, for a

poor conductor, the attenuation rate does not depend on the wave’s frequency; instead,

α = Zwave × σ. (21)

For example, consider isopropyl alcohol; it’s commonly used for cleaning electronics

precisely because of its rather low conductivity σ ≈ 6 · 10−6 Ω

/m. It also has a rather large
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dielectric constant ǫ ≈ 18.6, so at ω = 2π × 1 MHz we have ωǫǫ0 ≈ 5.3 · 10−4 Ω

/m ≫ σ,

so the low-conductivity approximation is valid. Consequently, the attenuation rate of EM

waves in a pure isopropyl alcohol is frequency-independent

α =

(

Zwave =
Z0√
ǫ

)

× σ ≈ 0.53 · 10−3 m−1. (22)

In other words, the EM wave can travel through distance

L =
ln(2)

α
≈ 1.3 km ≈ 0.82 mile (23)

before it would lose half of its intensity.

Good Conductor Limit

In the opposite limit of a good conductor with σ ≫ ωǫǫ0, the conduction current is much

larger than the displacement current, and the imaginary part of the effective permittivity

ǫeff is much larger than its real part,

Re ǫeff = ǫ ≪ σ

ωǫ0
= Im ǫeff . (24)

For such complex numbers

√
ǫeff ≈ 1 + i√

2
×
√

|ǫeff | ≈ 1 + i√
2

×
√

Im ǫeff , (25)

hence

n ≈ 1 + i√
2

×
√

µ× σ

ωǫ0
, (26)

and therefore

n1 = n2 =

√

µσ

2ωǫ0
. (27)

Or in terms of the complex wave number k = k1 + ik2,

k1 = k2 =
ω

c
×
√

µσ

2ωǫ0
=
√

1
2µµ0ωσ . (28)
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Consequently, we have an attenuating wave

E(x, t) = ~E e−iωte(i−1)x/δ, H(x, t) = ~H e−iωte(i−1)x/δ (29)

for

δ
def
=

1

k2
=

√

2ρ

µµ0ω
(30)

(where ρ = 1/σ is the materials resistivity). Note that this wave attenuates over a fraction

of its wavelength, specifically

1

α
=

δ

2
=

1

2k2
=

1

2k1
=

λ

4π
. (31)

The distance δ is called the skin depth because of its relation to the skin effect: The

expulsion of a high-frequency electric current from the interior of a thick conductor. Instead,

the current is restricted to the thin subsurface layer of the conductor, i.e. the conductor’s

“skin”, hence the name of the effect.

The skin effect follows from the attenuating wave equation (29) for the electric field and

the Ohm’s Law J = σE for the conduction current density. Indeed, the current density |bj
follows the electric field: inside the conductor, it attenuates with depth at the exponential

rate 1/δ, so it does not penetrate to a depth x beyond a few × δ. Instead,

J(x, t) = Ĵ0 exp(−iωt) ∗ exp(ix/δ) exp(−x/δ) (32)

where Ĵ0 is the surface amplitude of the current density and x is the depth inside the

conductor, i.e. the distance from the surface. According to this formula, for x ≫ δ, J(x) ≈ 0,

so the current indeed flows only through the thin skin 0 < x < few × δ of the conductor.

Note that the skin depth (30) decreases with frequency as 1/
√
ω. For example, consider

a copper wire; at room temperature copper has ρ = 1.68 · 10−8 Ω/m and µ ≈ 1, hence

δ =
65.2 mm
√

f [in Hz]
. (33)

Thus, for the 60 Hz AC current in the power wires, the skin depth is 8.4 mm, but for the

700 MHz frequency used by many cellphones, the skin depth in a copper wire is only 2.5

microns.
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Because of the skin effect, the connecting wires have much large impedances to the high-

frequency AC currents than their DC resistances. To see how this works, consider a thick

conductor, much thicker than the skin depth δ. On the scale of this conductor thickness, the

current (32) may be approximated by the surface current of linear density

K(t) =

∞
∫

0

dxJ(x, t)

= Ĵ0e
−iωt

∞
∫

0

dx e(i−1)x/δ

= Ĵ0e
−iωt δ

1− i
.

(34)

Consequently, the net current through a thick wire is

I(t) = perimeter× δ

1− i
× Ĵ0 × e−iωt (35)

(assuming the surface current J0 flows in the long direction of the wire). For example, for a

round wire of radius a, the net current I(t) = Îe−iωt has amplitude

Î =
2πaδ

1− i
Ĵ0 . (36)

At the same time, the voltage drop along the wire — as measured along the wire’s surface

— is

V = L · Esurface = L · ρJsurface = Lρ Ĵ0e
−iωt = V̂ e−iωt (37)

for the amplitude

V̂ = LρĴ0. (38)

Comparing this voltage amplitude to the current amplitude (36), we obtain the wire’s
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impedance to the high-frequency current as

ZHF =
V̂

Î
=

Lρ

2πaδ
× (1− i) =

Lρ

2πaδ
× (1 + j). (39)

On the other hand, the same wire’s resistance to the DC current is simply

RDC =
Lρ

πa2
, (40)

hence

ZHF

RDC
=

(1 + j)a

2δ
, (41)

which is a rather large ratio for a ≫ δ. For example, a copper wire of diameter 2a = 0.5 mm

has DC resistance of only 0.086 Ω/m, while its AC impedance at 700 MHz becomes much

larger 4.3(1 + j) Ω/m.

Diffusion Equation

Besides have a much larger magnitude than the DC resistance, the HF impedance is

also complex rather than real, with a +45◦ phase (in the EE convention for the sign). In

other words, it has not only resistive but also inductive components. And this inductive

component militates against sudden changes of the current in the conductor. Indeed, for the

currents and EM fields of general (rather than harmonic) time dependence, the currents and

the fields obey the diffusion equation

∂

∂t
J(r, t) = D∇2J(r, t),

∂

∂t
E(r, t) = D∇2E(r, t),

∂

∂t
B(r, t) = D∇2B(r, t),

(42)

for the diffusion coefficient

D =
1

µµ0σ
. (43)

At the same time, the free charges in a conductor flow to the conductor’s surface while the
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bulk charge density decays exponentially as

ρ(r, t) = ρ0(r) exp(−t/τ) for τ =
ǫǫ0
σ

. (44)

Note: the better the conductor, the faster the bulk charges flow to the surface. For example,

in the copper metal τ ≈ 1.5 ·10−19 s, too fast to measure, while in a fused quartz τ ≈ 3 ·10+7,

about a year.

All these formulae stems from the Maxwell equations and the Ohm’s Law J = σE.

Indeed, combining Ohm’s Law with the Gauss Law and the current continuity equation, we

arrive

∂ρ

∂t
= −∇ · J = −σ∇ · E = − σ

ǫǫ0
∇ ·D = − σ

ǫǫ0
ρ. (45)

This is a first-order differential equation WRT time and independent of location r, so its

solution is

ρ(r, t) = ρ0(r) exp

(

− σ

ǫǫ0
t

)

(46)

and hence eq. (44).

To derive the diffusion equation for the conducting current J and the EM fields, let’s

assume that the initial bulk charge density ρ has already decayed to ρ = 0. Consequently,

the Maxwell equations become

∇ · E = 0, (M1)

∇× E = −∂B

∂t
, (M2)

∇ ·B = 0, (M3)

∇×B = µµ0σE + µµ0ǫǫ0
∂E

∂t
(M4)

in a good conductor ≈ µµ0σE. (M4a)

Consequently,

∇2E = ∇(∇ · E) − ∇× (∇× E) = 0 − ∇× (∇× E)

= +∇× ∂B

∂t
=

∂

∂t

(

∇×B
)

= µµ0σ
∂E

∂t

(47)
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or equivalently

∂E

∂t
=

1

µµ0σ
∇2E, (48)

exactly as in eq. (42) for the electric field.

Since the conduction current J = σE is proportional to the electric field, it also obeys

the similar diffusion equation

∂J

∂t
=

1

µµ0σ
∇2J. (49)

Finally, for the magnetic field we have

∇2B = ∇(∇ ·B) − ∇× (∇×B) = 0 − ∇× (∇×B)

= −∇×
(

µµ0σE
)

= −µµ0σ(∇×E)

= +µµ0σ
∂B

∂t
,

(50)

so it also obeys the diffusion equation

∂B

∂t
=

1

µµ0σ
∇2B. (51)

As an example of magnetic diffusion, consider a solid metal cylinder surrounded by a

solenoidal coil. When we turn on the current in the coil, the surface of the metal cylinder is

suddenly exposed to the coil’s H field parallel to the cylinder. But this field cannot instantly

penetrate the cylinder; instead, it has to diffuse inward from the surface according to the

diffusion equation. This means that at the moment the coil’s current I is turned on, we get

an equal and opposite counter-current on the cylinder’s surface,

J(z, s, φ) = −Kδ(s− R)nφ for K =
IN

L
. (52)

But as the time passes, this counter-current diffuses inward towards the cylinder’s center,

and this allows the magnetic field to penetrate the surface and also diffuse inward:

for t > 0, J(r, t) = J(s, t) φ̂φφφφφφφφφ , B(r, t) = B(s, t) ẑ (53)

for some time-dependent radial profiles J(s, t) and B(s, t).
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Alas, solving the diffusion equation for the time dependence of these radial profiles

involves Bessel functions and their relatives, and this requires math skill beyond this under-

graduate class. Even the simplified 1D problem for the outer layers of the metal cylinder

with (R− s) ≪ R involves graduate-level math, so let me simply give you the solution: The

current profile (for (R−s) ≪ s) is a Gaussian bell curve, or rather a half s < R of a Gaussian

bell curve,

J(s, t) =
2I(N/L)√

π a(t)
× exp

(

−(R − s)2

a2(t)

)

(54)

whose width increases with time as

a(t) =
√
4D × t , (55)

while the magnetic field profile is

B(s, t) = µµ0(N/L)I ×
(

1 − erf((R− s)/a(t))
)

(56)

where erf is the error function of the Gaussian distribution.

Reflection of EM Waves off a Conductor Surface

Let’s go back to the harmonic plane EM waves and consider the reflection of such waves

off a surface of a good conductor. For simplicity, let’s focus on the head-on case where all

waves — the incident, the reflected, and the transmitted — travel ⊥ to the boundary. Let’s

that ⊥ direction to be our z axis with z = 0 at the boundary. Thus, at z < 0 there is vacuum

(or air approximated as vacuum), and the incident + reflected waves

E(z, t) = ~Ei exp(+ikz − iωt) + ~Er exp(−ikz − iωt),

H(z, t) =
ẑ

Z0
× ~Ei exp(+ikz − iωt) − ẑ

Z0
× ~Er exp(−ikz − iωt),

(57)

where k = ω/c and Z0 =
√

µ0/ǫ0 is the wave impedance of the free space. On the other hand,

at z > 0 there is some conducting medium with a complex refraction index n = n1+ in2 and
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a complex wave impedance

Z =
µZ0

n
, (58)

so the transmitted wave attenuates with z according to

E(z, t) = ~Et exp(+in1kz − iωt) exp(−n2kz),

H(z, t) =
n1 + in2
µZ0

ẑ× ~Et exp(+in1kz − iωt) exp(−n2kz).
(59)

At the boundary there are no oscillating surface charges or currents, so the tangent electric

and magnetic fields E and H obey simple boundary conditions

E(z → −0) = E(z → +0), H(z → −0) = H(z → +0). (60)

For the waves (57) and (59), these boundary conditions become

~Ei + ~Er = ~Et ,
~Ei − ~Er =

n1 + in2
µ

~Et .
(61)

Solving these linear equations, we obtain the reflection and the transmission coefficients

r
def
=

~Er
~Ei

=
(n/µ)− 1

(n/µ) + 1
,

t
def
=

~Et
~Ei

=
2

(n/µ) + 1
.

(62)

Note: in terms of the complex wave impedances Z0 for the vacuum and (58) for the con-

ducting material,

r =
Z0 − Z

Z0 + Z
, t =

2Z

Z0 + Z
, (63)

exactly as we had earlier in class (cf. my notes on refraction and reflection, eq. (29) on

page 7), except that for a conducting material, the wave impedance is complex rather than

real.
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For a complex reflection coefficient r, the reflectivity is

R
def
=

Ir
Ii

= |r|2 =
|Z0 − Z|2
Z0 + Z|2 , (64)

or in terms of the complex refraction index n = n1 + in2 (and µ, in case the reflector is a

magnetic metal like iron),

R =
|n− µ|2
|n+ µ|2 =

n21 + n22 − 2µn1 + µ2

n21 + n22 + 2µn1 + µ2
= 1 − 4µn1

n21 + n22 + 2µn1 + µ2
. (65)

Let’s assume the reflector is a good conductor with

ǫeff = ǫ +
iσ

ωǫ0
≈ i

σ

ωǫ0
(66)

then

√
ǫeff ≈ (1 + i)×

√

σ

2ωǫ0
(67)

and hence

n =
√
µǫeff ≈ (1 + i)×

√

µσ

2ωǫ0
= (1 + i)× c

ω
×
√

µµ0σω

2
= (1 + i)× c

ωδ
(68)

where δ is the skin depth in the reflecting material. Or in terms of the vacuum wavelength

λ = 2πc/ω of the EM wave in question,

n1 ≈ n2 ≈ λ

2πδ
≫ 1. (69)

Plugging this complex refraction index into eq. (65) for the reflectivity, we get

1 − R ≈ 4µ(λ/2πδ)

2(λ/2πδ)2 + 2µ(λ/2πδ) + µ2
. (70)

For a non-magnetic reflector with µ ≈ 1, or for a reflector being such a good conductor that

(λ/2πδ) ≫ µ, we may approximate the denominator of this formula by its first term, hence

1 − R ≈ 4µ(λ/2πδ)

2(λ/2πδ)2
=

2µ

(λ/2πδ)
=

4πµδ

λ
. (71)
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Example 1: Radio waves of frequency ω = 2π × 100 MHz (in the FM broadcast range)

reflecting off the surface of the sea. The sea water has conductivity σ ≈ 5

Ω

/m and µ ≈ 1,

so its skin depth at 100 MHz frequency is

δ =

√

2

µµ0ωσ
≈ 2.25 cm (72)

while the vacuum wavelength is λ = c/f ≈ 3 m. Thus, we may treat the sea water as a

good conductor at 100 MHz, and its reflectivity (for the head-on radio waves) is

R = 1 − 4πδ

λ
≈ 100% − 9.4% = 90.6%. (73)

Example 2: For another example, let a microwave beam at frequency 10 GHz reflect

off a clean surface of soft iron. In weak magnetic fields, the soft iron is an almost linear

ferromagnetic material with a rather high relative permeability µ ≈ 6000. It is also a so-so

electric conductor for a metal; its conductivity σ ≈ 6.7 · 106 Ω

/m is about 9 times less than

copper’s. But because of its high µ, it has a shorter skin depth than copper at the same

frequency: For 10 GHz frequency,

δiron =

√

2

µironµ0ωσiron
≈ 0.025 µm, (74)

compared to δcopper ≈ 0.65 µm. At the same time, the vacuum wavelength of the microwaves

in question is λ = 3 cm, so the ratio

λ

2πδ
=

3 cm

2π × 0.025 µm
≈ 1.9 · 105 (75)

is not only large but larger that µiron ≈ 6000. Consequently, we may use the approxima-

tion (71) for the reflectivity:

1 − R ≈ 4πµδ

λ
≈ 6.3%, (76)

thus R ≈ 93.7%.
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Dielectric and Magnetic Losses

The EM wave in conducting materials attenuate with distance because their energy is

dissipated by the conduction current J = σE, hence power loss

Ploss =

∫∫∫

σ

2

∣

∣

∣
Ê

∣

∣

∣

2
d3Vol. (77)

But even a perfectly non-conducting dielectric may dissipate the electric energy and cause

EM waves to attenuate if the dielectric’s polarization lags behind the electric field. Indeed,

suppose instead of an instant response P(t) = χǫ0E(t) of the polarization to the electric field

we have

P(t) = χǫ0E(t− δt), (78)

hence for a harmonic electric field E(t) = Êe−iωt the polarization has a different phase, or

in terms of complex amplitudes

P̂ = χǫ0e
+iωδtÊ. (79)

In other words, the dielectric susceptibility becomes complex χ× eiωδt, and hence the dielec-

tric constant

ǫ = 1 + χ× eiωδt (80)

also becomes complex without any help from the electric conductivity.

In general, the time lag δt depends on the frequency ω, and so does the magnitude of the

susceptibility χ, so the frequency dependence of the complex ǫ(ω) is more complicated than

eq. (80). For example, here is the plot of water’s permittivity — both its real part (blue)
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and imaginary part (red) — as functions of the frequency:

The frequency dependence of the Re ǫ(ω) and Im ǫ(ω) can be quite complicated, but the

imaginary part is always non-negative for any frequency, since the dielectric power loss

power loss

volume
= 1

2ωǫ0

∣

∣

∣
Ê

∣

∣

∣

2
× Im(ǫ) (81)

cannot possibly be negative, thus Im ǫ ≥ 0. To derive eq.(81), note that the electric work on

a dielectric is

δW =

∫∫∫

E · δD d3Vol, (82)

hence instant electric power per volume

power

volume
= E · ∂D

∂t
. (83)

Time-averaging this power for the harmonic electric field, we get

〈power〉
volume

= 1
2 Re

(

Ê∗ · (−iωD̂)
)

= 1
2 Re

(

Ê∗ · (−iωǫǫ0Ê)
)

= 1
2ωǫ0

∣

∣

∣
Ê

∣

∣

∣

2
Re
(

−iǫ
)

(84)

and hence eq. (81).
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When a material has both electric conductivity and Im ǫ > 0, it has two sources of

electric power loss — the Ohmic loss (77) and the dielectric loss (81). Fortunately, both

sources combine to

net power loss

volume
= 1

2ωǫ0

∣

∣

∣
Ê

∣

∣

∣

2
× Im

(

ǫeff
)

(85)

for

ǫeff(ω) = ǫ(ω) +
iσ(ω)

ωǫ0
. (86)

In this formula, the ǫ(ω) itself is complex and frequency dependent, and even the conductivity

σ(ω) may be complex and frequency dependent. Indeed, conductivities of metals become

complex and frequency-dependent for ω >∼ 1013 s−1. But regardless of these details, it’s

the imaginary part of the net ǫeff(ω) which cases the electric power loss. Likewise, it’s the

imaginary part of the net ǫeff(ω) — or rather Im
(√

ǫeff
)

— which is responsible for the

attenuation rate of the EM waves.

Finally, consider a non-conducting but ferromagnetic material like a ferrite. Similar to a

dielectric’s polarization lagging behind the electric field which causes it, the magnetization

of a ferromagnetic may also lag behind the magnetic field which controls it. Consequently,

the magnetic susceptibility and hence the relative permeability µ of the material becomes

complex and frequency dependent.

Similar to Im ǫeff leading to the electric power loss, Imµ leads to the magnetic power

loss

power loss

volume
= 1

2ωµ0

∣

∣

∣
Ĥ

∣

∣

∣

2
× Im

(

µ(ω)
)

. (87)

And since such loss can never become negative, we always have Im µ ≥ 0 at all frequencies.

Also, complex µ leads to attenuation of EM waves via the complex refraction index

n(ω) =
√

µ(ω)× ǫeff(ω) (88)

Moreover, having Imµ ≥ 0 and Im ǫeff ≥ 0 automagically leads to Im(n) ≥ 0, so the
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attenuating plane wave

E,H ∝ exp

(

iω

c
Re(n(ω))x − iωt

)

exp
(

−ω

c
Im(n(ω))x

)

(89)

is indeed attenuating rather than gaining strength.
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