ELECTROMAGNETIC WAVES IN CONDUCTORS
Attenuation and Skin Effect

Consider a harmonic EM wave in a conducting material, so besides the displacement

current
oD
Ji = — = —iwD = —iweeE (1)
ot
there is also the conduction current
J. = oE. (2)
(The sigma here is the electric conductivity and has nothing to do with surface electric
charges.) The Maxwell-Ampere equation combines the conduction and the displacement

currents into a single net current
VxH = Jpt = Je + Jg, (3)
which follows from the electric field as
Jnet = et (w)E (4)
where
oefi(w) = 0 — iwepe (5)

is the complex effective conductivity. It is also convenient to define the complex effective
relative permittivity
10ef (W) io

—= = - 6
Eef‘f<w) weo € + w€07 ( )

then we may write the Maxwell-Ampere equation as

VxB = —iw“eeg(”)E. (7)

Then combining this formula with the other Maxwell equations exactly as we did earlier in

class for the non-conducting media (cf. [ny notes on the subjeci, pages 3-4), we arrive at
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the EM wave equation

<v2 + ”26(;’)w2) (ﬁ) ~ 0 ®)

with a complex refraction index

n(w) = Viea@) = y/pe + L2 (9)

€qw

The general solutions of the wave equation (8) with a complex n are analytic continu-
ations of solutions of the ordinary wave equation. In particular, taking an ordinary plane
wave moving in the +X direction and analytically continuing to the complex n = nj + ing,

we get
E(z,t) = Eexp(ike — iwt), H(z,t) = Hexp(ike — iwt), (10)
for k = nw/c, but since n is now complex, we also get complex

ko= ky + ik, klzanw, Ry = 2= (11)

Consequently;,
exp(tkx) = exp(ik1z) X exp(—kox), (12)

which makes the wave (10) an attenuating wave
E(z,t) = & exp(ikiz —iwt) exp(—koz), H(z,t) = Hexp(ikix —iwt) exp(—kox); (13)

indeed, as the wave propagates in the +x direction, it also gets weaker and weaker. In

particular, the intensity of the wave
I = (S;) = %Re(fj* X 7-_[) = Ipexp(—2kaz) (14)
decreases with x at the exponential rate

dlog I
déf o8 = 2ky = 2n2£. (15)
&




Poor CoNDUCTOR LiMIT

As an example of calculating the attenuation rate o = 2ks, consider a poor electric

conductor with

o < weeg. (16)

For such a material, the conduction current is much weaker than the displacement current;
nevertheless, it is this conduction current which leads to attenuation of the EM waves. In

terms of the complex effective permittivity, eq. (16) means

Imegg = wieO < ¢ = Reeo. (17)

and for such complex numbers

. Imee
V/ ~ /R + i— 18
Eeff eeeff ZQ\/M ( )
Consequently,
o Jweg nle o
o o) - el S

and hence attenuation

a = 2ny(w/c) = —‘E'uc/e X0 = Zyave X O
0

wave 660 CEO

is the wave impedance of the material (in the zero-conduction approximation). This, for a

where

poor conductor, the attenuation rate does not depend on the wave’s frequency; instead,

o = Zyave X O. (21)

For example, consider isopropyl alcohol; it’s commonly used for cleaning electronics

precisely because of its rather low conductivity o ~ 6 - 1076 /m. It also has a rather large



dielectric constant € &~ 18.6, so at w = 27 x 1 MHz we have weeg ~ 5.3 - 10~* O/m > o,

so the low-conductivity approximation is valid. Consequently, the attenuation rate of EM

waves in a pure isopropyl alcohol is frequency-independent

Z
o = (Zwave = 7%) xo ~ 053-107% m~L.

In other words, the EM wave can travel through distance

~ 1.3 km =~ 0.82 mile

before it would lose half of its intensity.

Goobp CoONDUCTOR LiMIT

(22)

(23)

In the opposite limit of a good conductor with o > weep, the conduction current is much

larger than the displacement current, and the imaginary part of the effective permittivity

€off 1S much larger than its real part,

o
Reeef = ¢ K — = Imegg.
WEQ

For such complex numbers

141 1+

Veéelf = 7 X /| €ett| = NG X v/Im €,

hence

and therefore

2weg

Or in terms of the complex wave number k = ki + tko,

w o
ki = ko = — X Ho - _ \/%u,uowcr.
c 2weg

(28)



Consequently, we have an attenuating wave

E(l‘,t) _ g’e—iwte(i—l)x/f;’ H(:L‘,t) _ ﬁe—iwte(i—l)x/d (29)
for
def 1 2p
6 = — = 30
ka2 Hpow (30)

(where p = 1/0 is the materials resistivity). Note that this wave attenuates over a fraction

of its wavelength, specifically

1 ) 1 1 A

« 2 2]{32 2]{31 47
The distance ¢ is called the skin depth because of its relation to the skin effect: The
expulsion of a high-frequency electric current from the interior of a thick conductor. Instead,

the current is restricted to the thin subsurface layer of the conductor, i.e. the conductor’s

“skin”, hence the name of the effect.

The skin effect follows from the attenuating wave equation (29) for the electric field and
the Ohm’s Law J = oE for the conduction current density. Indeed, the current density |bj
follows the electric field: inside the conductor, it attenuates with depth at the exponential

rate 1/, so it does not penetrate to a depth x beyond a few x J. Instead,
J(z,t) = Joexp(—iwt) * exp(iz/d) exp(—x/d) (32)

where Jg is the surface amplitude of the current density and x is the depth inside the
conductor, i.e. the distance from the surface. According to this formula, for x > §, J(x) ~ 0,

so the current indeed flows only through the thin skin 0 < z < few x ¢ of the conductor.

Note that the skin depth (30) decreases with frequency as 1/y/w. For example, consider

a copper wire; at room temperature copper has p = 1.68 - 1078 2/m and p = 1, hence

5 — 65.2 mm (33)

/flin Hz]
Thus, for the 60 Hz AC current in the power wires, the skin depth is 8.4 mm, but for the
700 MHz frequency used by many cellphones, the skin depth in a copper wire is only 2.5

microns.



Because of the skin effect, the connecting wires have much large impedances to the high-
frequency AC currents than their DC resistances. To see how this works, consider a thick
conductor, much thicker than the skin depth §. On the scale of this conductor thickness, the

current (32) may be approximated by the surface current of linear density

o0

K(t) — /d:cJ(:c,t)

0

_ Joe-iwt /da: G(i-1)z/s (34)
0

Consequently, the net current through a thick wire is

I(t) = perimeter X 1 x Jo x et (35)

—1
(assuming the surface current Jy flows in the long direction of the wire). For example, for a

round wire of radius a, the net current I(t) = Te~™! has amplitude

A 2wad -
I = )
1. Jo (36)

At the same time, the voltage drop along the wire — as measured along the wire’s surface

—is
V = L'Esurface = L'szurface = ijoeiiwt = ‘A/eiiwt <37)

for the amplitude

N

V = LpJp. (38)

Comparing this voltage amplitude to the current amplitude (36), we obtain the wire’s



impedance to the high-frequency current as

Lp

B x(1=i) = 2mwad

2mad

v L
= = P x (1+ 7). (39)

On the other hand, the same wire’s resistance to the DC current is simply

L
Rpc = —2 (40)

ma?’

hence
ZHF B (1—i—j)a

which is a rather large ratio for a > §. For example, a copper wire of diameter 2a = 0.5 mm
has DC resistance of only 0.086 €2/m, while its AC impedance at 700 MHz becomes much
larger 4.3(1 + j) 2/m.

DIFFUSION EQUATION

Besides have a much larger magnitude than the DC resistance, the HF impedance is
also complex rather than real, with a +45° phase (in the EE convention for the sign). In
other words, it has not only resistive but also inductive components. And this inductive
component militates against sudden changes of the current in the conductor. Indeed, for the
currents and EM fields of general (rather than harmonic) time dependence, the currents and

the fields obey the diffusion equation

9 )

aJ(r,t) = DV4I(r,t),

%E(r,t) — DV2E(r, 1), (42)
0

5B, 1) = DV?B(r, 1),
for the diffusion coefficient
1

D = .
Koo

(43)

At the same time, the free charges in a conductor flow to the conductor’s surface while the



bulk charge density decays exponentially as
€EN
p(r,t) = po(r)exp(—t/T) for 7 = —. (44)
o
Note: the better the conductor, the faster the bulk charges flow to the surface. For example,
in the copper metal 7 ~ 1.5-10719 5, too fast to measure, while in a fused quartz 7 ~ 3-10%17,

about a year.

All these formulae stems from the Maxwell equations and the Ohm’s Law J = oE.
Indeed, combining Ohm’s Law with the Gauss Law and the current continuity equation, we

arrive

ap o o
_— = — . J = — . E = —— . D - —— Q. 45
o \V/ oV - v o (45)

This is a first-order differential equation WRT time and independent of location r, so its

solution is

€€p

o) = polr)exp (—it) (46)
and hence eq. (44).

To derive the diffusion equation for the conducting current J and the EM fields, let’s
assume that the initial bulk charge density p has already decayed to p = 0. Consequently,

the Maxwell equations become

V-E =0, (M1)
0B
| D —— M2
V-B = 0, (M3)
OE
VxB = pucE + ppocco - (M4)
in a good conductor ~ pugoE. (M4a)
Consequently,
V’E = V(V-E) - Vx(VXE) = 0 — Vx(VxE)
0B 0
B OE
= HHoo It



or equivalently
OE 1

o 2
5~ s VE (48)

exactly as in eq. (42) for the electric field.

Since the conduction current J = oE is proportional to the electric field, it also obeys

the similar diffusion equation
oJ 1

oJ _ 2
5 = s VT (49)

Finally, for the magnetic field we have
VB = V(V-B) - Vx(VxB) = 0 — Vx(VxB)
= =V x (upooE) = —ppoo(V x E) (50)

n 0B
= o—

so it also obeys the diffusion equation

OB 1,
— = B. 1
ot b0 v (51

As an example of magnetic diffusion, consider a solid metal cylinder surrounded by a
solenoidal coil. When we turn on the current in the coil, the surface of the metal cylinder is
suddenly exposed to the coil’s H field parallel to the cylinder. But this field cannot instantly
penetrate the cylinder; instead, it has to diffuse inward from the surface according to the
diffusion equation. This means that at the moment the coil’s current [ is turned on, we get

an equal and opposite counter-current on the cylinder’s surface,

J(zs.0) = —Ko(s — R)ny for K — % (52)

But as the time passes, this counter-current diffuses inward towards the cylinder’s center,

and this allows the magnetic field to penetrate the surface and also diffuse inward:

~

fort >0, J(r,t) = J(s,t)$, B(r,t) = B(s,t)# (53)

for some time-dependent radial profiles J(s,t) and B(s,t).



Alas, solving the diffusion equation for the time dependence of these radial profiles
involves Bessel functions and their relatives, and this requires math skill beyond this under-
graduate class. Even the simplified 1D problem for the outer layers of the metal cylinder
with (R — s) < R involves graduate-level math, so let me simply give you the solution: The
current profile (for (R—s) < s) is a Gaussian bell curve, or rather a half s < R of a Gaussian

bell curve,

J(s,t) = % X exp <—M) (54)

whose width increases with time as
a(t) = VAD x t, (55)
while the magnetic field profile is
Bls.t) = muo(N/L)I x (1 — exf((R — s)/a(t)) (56)
where erf is the error function of the Gaussian distribution.

Reflection of EM Waves off a Conductor Surface

Let’s go back to the harmonic plane EM waves and consider the reflection of such waves
off a surface of a good conductor. For simplicity, let’s focus on the head-on case where all
waves — the incident, the reflected, and the transmitted — travel L to the boundary. Let’s
that L direction to be our z axis with z = 0 at the boundary. Thus, at z < 0 there is vacuum

(or air approximated as vacuum), and the incident + reflected waves

E(z,t) = &exp(+ikz —iwt) + & exp(—ikz — iwt),

Z2 oz _ Z L (57)
H(z,t) = 7 x & exp(+ikz —iwt) — 7 x & exp(—ikz — iwt),

where k = w/c and Zy = /po/€o is the wave impedance of the free space. On the other hand,

at z > 0 there is some conducting medium with a complex refraction index n = n; +ing and

10



a complex wave impedance

Z
7 = M’ (58)

n

so the transmitted wave attenuates with z according to

—

E(z,t) = &exp(+inikz —iwt) exp(—nakz),

H(z,t) = % 2 x & exp(+inikz — iwt) exp(—ngkz).

(59)

At the boundary there are no oscillating surface charges or currents, so the tangent electric

and magnetic fields E and H obey simple boundary conditions

E(z - —0) = E(z — +0), H(z —» —-0) = H(z — 40). (60)

For the waves (57) and (59), these boundary conditions become

&+ & =&,
o o ; o 61
5@._57,:%&_ (61)

Solving these linear equations, we obtain the reflection and the transmission coefficients

det & (n/p) —1
"TE T mrn

& (62)
podef & 2
&  (n/p)+1

Note: in terms of the complex wave impedances Zj for the vacuum and (58) for the con-

ducting material,

20— 24 y 27 (63)
r = — [ —
Zo+ 2’ Zo+ 2"

exactly as we had earlier in class (¢f. jny_notes on refraction and reflection, eq. (29) on

page 7), except that for a conducting material, the wave impedance is complex rather than

real.

11
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For a complex reflection coefficient r, the reflectivity is

dof I ) | Zo — Z|?
R < L = = 64

—h

or in terms of the complex refraction index n = nj + iny (and p, in case the reflector is a

magnetic metal like iron),

B el 1| St 1 Bt L0 Wl G dpn, O 6s)
In+p2 0} 4 n3+2un + p? n} +n3 + 2uny + p
Let’s assume the reflector is a good conductor with
10 .o
WEeQ WEeQ
then
(1+410) x | — (67)
Coff = 7
eff 2weq
and hence
: o . c [ ppoow , c
n = peg ~ (1+1i) X 2o = (1+2)><;>< —5 = (1+2)><w—5 (68)

where ¢ is the skin depth in the reflecting material. Or in terms of the vacuum wavelength

A = 27e/w of the EM wave in question,

A
nlmmz%»l. (69)

Plugging this complex refraction index into eq. (65) for the reflectivity, we get

4u(N/27m0)

1 - =~ .
R 2(A\/2m8)2 + 2u(A/2m8) + p?

(70)

For a non-magnetic reflector with p ~ 1, or for a reflector being such a good conductor that
(A/2m9) > p, we may approximate the denominator of this formula by its first term, hence

dp(N/2m0)  2u Ampd

L= B~ o0ame = Oyzmd) — A

(71)

12



Example 1: Radio waves of frequency w = 27 x 100 MHz (in the FM broadcast range)
reflecting off the surface of the sea. The sea water has conductivity o ~ 5 U/m and p ~ 1,

so its skin depth at 100 MHz frequency is

2
J = ~ 2.25 cm (72)

Hpowo

while the vacuum wavelength is A = ¢/f ~ 3 m. Thus, we may treat the sea water as a

good conductor at 100 MHz, and its reflectivity (for the head-on radio waves) is

)
R=1- % ~ 100% — 9.4% = 90.6%. (73)

Example 2: For another example, let a microwave beam at frequency 10 GHz reflect
off a clean surface of soft iron. In weak magnetic fields, the soft iron is an almost linear
ferromagnetic material with a rather high relative permeability p ~ 6000. It is also a so-so
electric conductor for a metal; its conductivity o ~ 6.7 - 105 $J/m is about 9 times less than
copper’s. But because of its high pu, it has a shorter skin depth than copper at the same
frequency: For 10 GHz frequency,

2
Swon = | ————— ~ 0.025 pm, (74)
Hiron H0WTiron

compared to dcopper ~ 0.65 pm. At the same time, the vacuum wavelength of the microwaves

in question is A = 3 cm, so the ratio

A 3 cm
= ~ 1.9-10°
276 21 x 0.025 pm 910 (75)

is not only large but larger that pion &~ 6000. Consequently, we may use the approxima-

tion (71) for the reflectivity:
47 o
1 - R =~ ”/\—“ ~ 6.3%, (76)

thus R ~ 93.7%.



Dielectric and Magnetic Losses

The EM wave in conducting materials attenuate with distance because their energy is

dissipated by the conduction current J = o¢E, hence power loss

P — ///% )E’Q d3Vol. (77)

But even a perfectly non-conducting dielectric may dissipate the electric energy and cause
EM waves to attenuate if the dielectric’s polarization lags behind the electric field. Indeed,
suppose instead of an instant response P(t) = xegE(¢) of the polarization to the electric field

we have

P(t) = xeoE(t — ot), (78)

hence for a harmonic electric field E(t) = Ee~ ! the polarization has a different phase, or

in terms of complex amplitudes

A

P = yee ™R, (79)

iwdt

In other words, the dielectric susceptibility becomes complex y x ¢*°*, and hence the dielec-

tric constant

e =1+ xx giwdt (80)

also becomes complex without any help from the electric conductivity.

In general, the time lag 0t depends on the frequency w, and so does the magnitude of the
susceptibility x, so the frequency dependence of the complex €(w) is more complicated than

eq. (80). For example, here is the plot of water’s permittivity — both its real part (blue)

14



and imaginary part (red) — as functions of the frequency:
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The frequency dependence of the Re ¢(w) and Im €(w) can be quite complicated, but the

imaginary part is always non-negative for any frequency, since the dielectric power loss

power loss 1

A 12
= 56&]60 ’E’

» Im(e) (81)

volume

cannot possibly be negative, thus Ime > 0. To derive eq.(81), note that the electric work on

SW = ///E-5Dd3Vol, (82)

hence instant electric power per volume

a dielectric is

power oD
= E - —. 83
volume ot (83)

Time-averaging this power for the harmonic electric field, we get

A R . . A 12
(power) _ %Re<E*-(—iwD)> = %Re(E*-(—iw€€0E>> = gweo |E| Re(—ic)  (84)

volume

and hence eq. (81).
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When a material has both electric conductivity and Ime > 0, it has two sources of
electric power loss — the Ohmic loss (77) and the dielectric loss (81). Fortunately, both
sources combine to

net power loss

2
S — SWeo ‘E} x Im (eqft) (85)
for
io(w
carle) = elw) + 2 (36)

In this formula, the €(w) itself is complex and frequency dependent, and even the conductivity
o(w) may be complex and frequency dependent. Indeed, conductivities of metals become
complex and frequency-dependent for w =2 10 s7!. But regardless of these details, it’s
the imaginary part of the net e.g(w) which cases the electric power loss. Likewise, it’s the
imaginary part of the net eg(w) — or rather Im(y/ée) — which is responsible for the

attenuation rate of the EM waves.

Finally, consider a non-conducting but ferromagnetic material like a ferrite. Similar to a
dielectric’s polarization lagging behind the electric field which causes it, the magnetization
of a ferromagnetic may also lag behind the magnetic field which controls it. Consequently,
the magnetic susceptibility and hence the relative permeability p of the material becomes

complex and frequency dependent.

Similar to Im e.g leading to the electric power loss, Im u leads to the magnetic power
loss

power loss 1

’2 x Im(p(w)). (87)

volume

And since such loss can never become negative, we always have Im p > 0 at all frequencies.

Also, complex p leads to attenuation of EM waves via the complex refraction index
n(w) = v pw) X e (w) (88)

Moreover, having Impu > 0 and Ime,g > 0 automagically leads to Im(n) > 0, so the

16



attenuating plane wave

EH x exp (%‘” Re(n(w))z — m) exp (-2 1m(n(w)x)

is indeed attenuating rather than gaining strength.

17
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