
PHY–352 L. Solutions for problem set #1.

Problem 1:

(a) My coordinates: x axis along the cable, y axis horizontally across the cable, z axis

vertically from one flat wire to the other wire. Since h ≪ w ≪ cable’s length L, the electric

field is similar to the capacitor with two parallel w × L plates at distance h, thus

E =
V

h
(−ẑ) (S.1)

inside the cable and negligible outside it. As to the magnetic field, it’s also negligible outside

the cable, while inside the cable it obtains from the Ampere Law: Treating each flat wire as

a current sheet of current density K = ±(I/w)x̂, we get

Ĥ =
I

w
ŷ . (S.2)

(b) The Poynting vector is

S = E×H =
V I

wh
(−ẑ× ŷ) =

V I

wh
x̂. (S.3)

Note the +x̂ direction of this vector — along the cable. Physically, this means the EM power

flows along the cable at uniform density V I/wh, so the net power carried by the EM fields

inside the cable is

P = Sx ×

(

crosssection

area

)

=
V I

wh
× wh = V I. (S.4)

(c) By inspection, the net power flow P = V I by the EM fields inside the cable is precisely

the net electric power carried by the cable, from the source at one end of the cable to the load

at the other end. But please note: this is not a separate type of EM power in addition to

the ordinary electric power but simply a different way to calculate the same power P = V I
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Problem 2:

(a) The magnetic field of a long solenoid is concentrated inside the solenoid itself, so the

magnetic flux through the wire ring is the same as the net flux through the solenoid,

F = πa2 × Bz
inside = πa2 × µ0(N/ℓ)× I. (S.5)

When this flux changes with time, it induces EMF in the ring

E = −
dF

dt
= −πa2µ0(N/ℓ)×

dI

dt
, (S.6)

which in turn leads to the ring current

Ir(t) =
E(t)

R
= −

πa2µ0(N/ℓ)

R
×

dI

dt
. (S.7)

(b) Time-dependent magnetic field inside the solenoid induces circular electric field both

inside and outside the solenoid. Outside the solenoid, this field is

E = −
φ̂

2πs

dF

dt
= −πa2µ0(N/ℓ)

dI

dt

φ̂

2πs
= +RIr

φ̂

2πs
(S.8)

In particularly, just outside the solenoid — i.e., at s = a+ very small,

Eoutside ≈
RIr
2πa

φ̂. (S.9)

As to the magnetic field due to the current Ir in the wire ring, we know how to calculate it

at the ring’s center or along the ring’s axis, but we do not know how to calculate it anywhere

else. Fortunately, for the ring of radius b ≫ a, we may approximate the ring’s field just

outside the solenoid by the field on the solenoid’s axis, thus

H
just
outside ≈ Hon axis =

Irµ0
2

b2ẑ

(b2 + z2)3/2
(S.10)

where z coordinate along the ring’s axis is counted from the ring’s center.
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Finally, the Poynting vector just outside the solenoid obtains as

S
just
outside = E

just
outside ×H

just
outside =

RI2r
4πa

b2

(b2 + z2)3/2

(

φ̂× ẑ = ŝ
)

. (S.11)

Note the direction of this vector: the EM power flows in the radial direction away from the

solenoid.

(c) The net EM power flowing away from the solenoid obtains by integration

Wnet =

∫∫

S · d2a (S.12)

over a cylindrical surface immediately surrounding the solenoid. For such a surface

d2a = a dφ dz ŝ, hence

S · d2a = aSs dφ dz → 2πaSs dz, (S.13)

and therefore

Wnet =

+∞
∫

−∞

RI2r
4πa

×
b2

(b2 + z2)3/2
× 2πa dz

=
RI2r
2

+∞
∫

−∞

b2 dz

(b2 + z2)3/2

=
RI2r
2

× 2 = RI2r .

(S.14)

By inspection, this is precisely the electric power dissipated by the wire ring, quod erat

demonstrandum.

Problem 3:

(a) Let the two charges be located at r1,2 = (0, 0,±a), so the equidistant plane is the (x, y)
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plane. Along that plane, the net electric field is

E =
Q

4πǫ0

(x, y,−a)

R3
+

Q

4πǫ0

(x, y,+a)

R3
=

Q

2πǫ0

(x, y, 0)

R3
(S.15)

where R =
√

x2 + y2 + a2. Consequently, the electric stress tensor is

T ij = ǫ0E
iEj − 1

2ǫ0E
2δij , (S.16)

which in matrix notations becomes

↔

T =
Q2

4π2ǫ0R6







x2 xy 0

xy y2 0

0 0 0






−

Q2(x2 + y2)

8π2ǫ0R6







1 0 0

0 1 0

0 0 1







=
Q2

8π2ǫ0R6







x2 − y2 2xy 0

2xy y2 − x2 0

0 0 −x2 − y2






.

(S.17)

(b) This time, the electric field on the equidistant (x, y) plane is

E =
Q

4πǫ0

(x, y,−a)

R3
−

Q

4πǫ0

(x, y,+a)

R3
=

Q

2πǫ0

(0, 0, a)

R3
. (S.18)

Consequently, the electric stress tensor

T ij = ǫ0E
iEj − 1

2
ǫ0E

2δij (S.19)

becomes in matrix notations

↔

T =
Q2a2

4π2ǫ0R6







0 0 0

0 0 0

0 0 1






−

Q2a2

8π2ǫ0R6







1 0 0

0 1 0

0 0 1







=
Q2a2

8π2ǫ0R6







−1 0 0

0 −1 0

0 0 +1






.

(S.20)
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Problem 4:

Along the equatorial plane — both inside and outside the sphere — the magnetic field is

parallel to the rotation axis, which we take to be the z axis of our coordinate system:

Binside = +
2µ0σRω

3
ẑ, Boutside = −

µ0σR
4ω

3r3
ẑ. (S.21)

Consequently, in the equatorial plane

↔

Tmag =
B(r)2

2µ0







−1 0 0

0 −1 0

0 0 +1






. (S.22)

Given this stress tensor, the net (magnetic) force between the two hemispheres obtains as

F = −

∫∫

↔

Tmag · d
2a (S.23)

where the integral is over the entire equatorial plane, both inside and inside the sphere in

question. Along the whole plane d2a points in the z direction, and the net force should also

point in the same direction because of rotational symmetry. Therefore, F x = F y = 0 while

F z = −

∫∫

T zz d2a = −

∞
∫

0

B(r)2

2µ0
2πr dr. (S.24)

where the overall − sign indicates the attractive force between the two hemispheres. Specif-

ically,

B2(r)

2µ0
=

µ0(σRω)2

18
×

{

4 for r < R,

(R/r)6 for r > R,
(S.25)

hence

F z = −
2πµ0(σRω)2

18
×





R
∫

0

4× r dr +

∞
∫

R

R6

r6
r dr



 . (S.26)

Evaluating the integrals, we get

R
∫

0

4× r dr = 4×
R2

2
= 2R2, (S.27)
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∞
∫

R

R6

r6
r dr = R6 ×

1

4R4
= 1

4R
2, (S.28)

hence

F z = −
2πµ0(σRω)2

18
×
(

2R2 + 1
4R

2 = 9
4R

2
)

= −
πµ0σ

2R4ω2

4
. (S.29)

Problem 5:

(a) Let’s assume the top plate of the capacitor has positive charge Q > 0. Then the electric

displacement field between the capacitor plates

D = −(Q/A)ẑ (S.30)

points down, while the magnetic field is the external field B = bx̂. Consequently, the EM

momentum density between the plates

g = D×B = (Q/A)B
(

−ẑ× x̂ = −ŷ
)

(S.31)

is directed along the negative y axis, and the net EM momentum of the capacitor is simply

the volume times this momentum density,

pem = Ah g = −QBh ŷ . (S.32)

(b) Assuming the positive charge Q > 0 is on the top plate of the capacitor, the discharging

current in the wire lows downward. Consequently, the magnetic force on the wire

F = I~ℓ× B = Ih(−ẑ)× Bx̂ = −IhB ŷ (S.33)

also points in the negative y direction. And the net impulse of this magnetic force is

~Π =

∫

F dt = −hB ŷ

∫

I(t) dt = −hB ŷQ. (S.34)

6



(c) By inspection, the net impulse of the magnetic force is precisely the net EM momentum

of the capacitor before its discharge,

~Π = −QhB ŷ = +pem . (S.35)

This is in perfect agreement with the momentum-impulse theorem:

p
system
init − p

system
final = ~Π

(

by the system

on other bodies

)

. (S.36)

The system in this problem is the EM field inside the capacitor — whose net momentum

drops from −QhBŷ to zero, — while the other bodies is simply the wire discharging the

capacitor.

Problem 6:

(a) Inside the toroidal coil, there is magnetic field

B =
µ0NI

2πs
φ̂ ≈

µ0NI

2πa
φ̂ . (S.37)

Also, the point charge at the toroid’s center generates the electric field

E =
Q

4πǫ0

n

r2
. (S.38)

Assuming the coil’s wires do not screen out this electric field, we may approximate the

electric field inside the coil as

E ≈
Q

4πǫ0a2
(

n ≈ ŝ
)

. (S.39)

Together, the electric and the magnetic fields inside the coil have momentum density

gem = D×B = ǫ0E×B =
Q

4πa2
µ0NI

2πa

(

ŝ× φ̂ = ẑ
)

=
µ0NIQ

8π2a3
ẑ . (S.40)

Note: this momentum is directed along the z axis of the toroidal coil.
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Finally, since this momentum density is approximately uniform inside the coil and van-

ishes outside the coil, the net EM momentum obtains by simply multiplying the momentum

density (S.40) but the internal volume V = 2πa× w × h of the coil, thus

pnet
em = 2πawh

µ0NIQ

8π2a3
ẑ =

µ0NIQwh

4πa2
ẑ . (S.41)

(b) As you should have learned last semester, finding the electric field induced by changing

the magnetic flux in a thin coil is mathematically similar to finding the magnetic field due

to a current in a thin wire, except for an overall sign. Indeed, compare Maxwell equations

∇×E = −
∂B

∂t
and ∇×H = +J + Jdispl . (S.42)

In particular, for a thin toroidal coil with time-dependent flux F (t), the electric field induced

at the coil’s center is is similar to the magnetic field at the center of a current carrying coil,

H = +I
ẑ

2a
=⇒ E = −

dF

dt

ẑ

2a
. (S.43)

For the coil in question,

F (t) =
µ0whNI(t)

2πa
(S.44)

hence

E = −
µ0whN

4πa2
dI

dt
ẑ, (S.45)

which exerts the force

F = QE = −
µ0whNQ

4πa2
dI

dt
ẑ (S.46)

on the point charge at the coil’s center. The net impulse of this force is

~Π =

∫

F dt =
µ0whNQ

4πa2
(−ẑ)

∫

dI

dt
dt =

µ0whNQ

4πa2
(−ẑ)

(

Ifin − Iinit
)

. (S.47)

For the problem in question, we start with some current I0 and then turn it off, thus Ifin −

Iinit = −I0, thus the net impulse of the electric force on the point charge

~Π = +
µ0whNQI0

4πa2
ẑ . (S.48)
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(c) By inspection, the net impulse (S.48) of the force on the point charge is precisely the

net EM momentum in the coil before we turned off the current,

~Π = +
µ0whNQI0

4πa2
ẑ = pinit

em . (S.49)

This is in perfect agreement with the momentum-impulse theorem

~Π = pinit
em − pfin

em (S.50)

since after we turn off the current pfin
em = 0.

Problem 7:

Inside the sphere, the EM momentum density is uniform

g = D×B =
4µ0
9

P×M . (S.51)

Outside the sphere, we have a more complicated formula

g = D×B =
µ0R

6

9r6
(

3n(n ·P − P
)

×
(

3n(n ·M − M
)

, (S.52)

where
(

3n(n ·P) − P
)

×
(

3n(n ·M) − M
)

=

= 9(n ·P)(n ·M)(n× n) + P×M

− 3(n ·M)(n×P) − 3(n ·P)(n×M).

(S.53)

On the RHS of this formula, the first term vanishes because n × n = 0, while the last two

terms cancel each other after averaging over the direction of n. Note that we are going to

integrate the momentum density (S.52) over the whole space outside the sphere — which

includes both the radial integration and integration over the directions n, — so we may just

as well average over the directions n before integrating over the radius r. In light of eq. (7),
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angular averaging yields

3(n ·P)(n×M) → P×M ,

3(n ·M)(n×P) → M×P ,
(S.54)

hence

−3(n ·M)(n×P) − 3(n ·P)(n×M) → −P×M − M×P = 0. (S.55)

Consequently, the only surviving term on the RHS of eq. (S.53) is +P×M, thus

g →
µ0R

6

9r6
(P×M). (S.56)

Altogether, after angular averaging but before radial integration we have

g →
µ0
9
(P×M)

{

4 for r > R,

(R/r)6 for r > R.
(S.57)

Integrating this momentum density over the radius, we have and the net EM momentum

generated by the ball is the integral of this density over the whole space:

pnet
em =

µ0
9
(P×M)

∞
∫

0

{

4 for r > R

(R/r)6 for r > R

}

4πr2 dr, (S.58)

where the integral over all the radii splits into two ranges, one for r < R (inside the sphere)

and one for r > R (outside the sphere. Thus

R
∫

0

4× 4πr2dr = 16π ×
R3

3
=

16π

3
R3 , (S.59)

∞
∫

R

(R/r)6 × 4πr2 dr = 4πR6 ×
1

3R3
=

4π

3
R3 , (S.60)
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hence
(

whole

integral

)

=
16π

3
R3 +

4π

4
R3 =

20π

3
R3 , (S.61)

and therefore

pnet
em =

20πµ0R
3

27
(P×M). (S.62)

Problem 8:

(q) Let’s start with the local energy conservation eq. (15). Regardless of the dielec-

tric/magnetic material non-uniformity

∂u

∂t
= E ·

∂D

∂t
+ H ·

∂B

∂t
= E ·

(

∇×H − J
)

+ H ·
(

−∇× E
)

= −E · J + E · (∇×H) − H · (∇× E)

= −E · J + ∇ · (E×H)

= P + ∇ · S,

(S.63)

hence eq. (15).

But the local momentum conservation becomes more complicated. Let’s start with the

electric part of the
↔

T stress tensor and its divergence. In components

∇iT ij
el = ∇i

(

DiEj − 1
2ǫǫ0E

2δij
)

= (∇iDi)Ej + Di(∇iEj) − ǫǫ0E
k∇jEk − 1

2(∇
jǫ)ǫ0E

2
(S.64)

where ∇iDi = ∇ ·D = ρ while

Di(∇iEj) − Dk(∇jEk) = Di(∇iEj) − Di(∇jEi)

= Di
(

∇iEj −∇jEi = ǫijk(∇× E)k
)

=
[

(∇× E)×D
]j
,

(S.65)

hence in vector notations

∇ ·
↔

T el = ρE + (∇× E)×D − 1
2ǫ0E

2(∇ǫ). (S.66)
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Similarly, the magnetic part of the stress tensor has divergence

∇iT ij
mag = ∇i

(

BiHj − 1
2
µµ0H

2δij
)

= (∇iBi)Hj + Bi(∇iHj) − µµ0H
k∇iHk − 1

2
(∇iµ)µ0H

2
(S.67)

where ∇iBi = ∇ ·B = 0 while

Bi(∇iHj) − Bk(∇jHk) = Bi(∇iHj) − Bi(∇jH i)

= Bi
(

∇iHj −∇jH i = ǫijk(∇×H)k
)

=
[

(∇×H)×B
]j
,

(S.68)

hence in vector notations

∇ ·
↔

Tmag = 0 + (∇×H)×B − 1
2µ0H

2(∇µ). (S.69)

Altogether,

∇ ·
↔

T em = ρE + (∇× E)×D − 1
2ǫ0E

2(∇ǫ) + (∇×H)×B − 1
2µ0H

2(∇µ), (S.70)

and consequently — for the force density as in eq. (18), —

∇ ·
↔

T em − fem = (∇× E)×D + (∇×H)×B − J×B. (S.71)

But by Maxwell equations

∇× E = −
∂B

∂t
, ∇×H = +J +

∂D

∂t
, (S.72)

hence eq. (S.71)becomes

∇ ·
↔

T em − fem = −
∂B

∂t
×D +

(

J+
∂D

∂t

)

×B − J×B

= +D×
∂B

∂t
+

∂D

∂t
×B

=
∂

∂t

(

D×B
)

=
∂gem
∂t

.

(S.73)

Thus, the EM momentum density (13), the stress tensor (14), and the force density (18)
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indeed obey the local momentum conservation equation

∂g

∂t
− ∇ ·

↔

T + f = 0. (16)

Quod erat demonstrandum.

(b–c) As written, the dielectric force term and the magnetic force term in eq. (18) ap-

ply to the continuously variable electric permittivity ǫ(r) and magnetic permeability µ(r).

For abrupt discontinuities of ǫ(r) and/or µ(r) at the boundaries of dielectric or magnetic

materials, we need to include the delta-functions

∇ǫ(r) → disc(ǫ)δ(x⊥boundary)n⊥boundary (S.74)

and likewise

∇µ(r) → disc(µ)δ(x⊥boundary)n⊥boundary . (S.75)

In particular, for a piece of uniform dielectric (with ǫ ≡ ǫd) surrounded by vacuum (with

ǫ ≡ 1), we have disc(ǫ) = (1− ǫd), thus

∇ǫ(r) = (1− ǫd)δ(x⊥boundary)n⊥boundary, (S.76)

and hence in the integral for the net force on the dielectric

(∇ǫ) d3Vol → (1− ǫd)d
2a[over the boundary of the dielectric piece]. (S.77)

Thus, for a dielectric piece occupying volume V and not carrying any free charges, the net

electric force is

Fnet
el =

∫∫∫

(

−1
2
ǫ0E

2
)

(∇ǫ)d3Vol

=

∫∫

boundary

of V

1
2ǫ0(ǫd − 1)E2 d2a

〈〈 by Gauss theorem 〉〉

= 1
2ǫ0(ǫd − 1)

∫∫∫

V

∇(E2) d3Vol.

(S.78)

In particular, when this dielectric piece is small enough that the gradient ∇(E2) is approxi-
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mately uniform over its volume V,

∇(E2)@(r ∈ V) ≈ ∇(E2)@rd (S.79)

for some representative point rdZ inside the dielectric piece, the integral (S.78) simplifies to

Fnet
el = 1

2ǫ0(ǫd − 1)V∇(E2)@rd . (19)

Likewise, for a piece of a uniform magnetic material with some µm 6= 1 surrounded by

vacuum,

∇µ(r) = (1− µm)δ(x⊥boundary)n⊥boundary, (S.80)

and hence in the integral for the net force on the material

(∇µ) d3Vol → (1− µm)d
2a[over the boundary of the dielectric piece]. (S.81)

Consequently, the net magnetic force is

Fnet
mag =

∫∫∫

(

−1
2µ0H

2
)

(∇µ)d3Vol

=

∫∫

boundary

of V

1
2µ0(µm − 1)H2 d2a

〈〈 by Gauss theorem 〉〉

= 1
2ǫ0(µm − 1)

∫∫∫

V

∇(H2) d3Vol,

(S.82)

which for a small piece of magnetic material may be approximated as

Fnet
mag = 1

2
µ0(µm − 1)V∇(H2)@rm . (S.83)

Note: for a paramagnetic or ferromagnetic material with µm > 1, this force points in the

direction of increasing magnetic field, wile for a diamagnetic material with µm < 1 the

force has opposite direction. OOH, the dielectric force (19) always points in the direction of

increasing electric field since all dielectrics have ǫd > 1.
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