PHY-352 L. Solutions for problem set #1.

Problem 1:
(a) My coordinates: = axis along the cable, y axis horizontally across the cable, z axis
vertically from one flat wire to the other wire. Since h < w < cable’s length L, the electric

field is similar to the capacitor with two parallel w x L plates at distance h, thus

(—2) (5.1)

inside the cable and negligible outside it. As to the magnetic field, it’s also negligible outside
the cable, while inside the cable it obtains from the Ampere Law: Treating each flat wire as
a current sheet of current density K = +(1/w)x, we get

~

H =

SHE

V. (S.2)

(b) The Poynting vector is

VI VI
S =ExH = —(-zxy) = —x%. (S.3)
wh wh
Note the +x direction of this vector — along the cable. Physically, this means the EM power
flows along the cable at uniform density VI/wh, so the net power carried by the EM fields

inside the cable is

area w

P = S, x (Cmsssecmon) - v—i xwh = VI (S.4)

(c) By inspection, the net power flow P = VI by the EM fields inside the cable is precisely
the net electric power carried by the cable, from the source at one end of the cable to the load
at the other end. But please note: this is not a separate type of EM power in addition to

the ordinary electric power but simply a different way to calculate the same power P = V[



Problem 2:
(a) The magnetic field of a long solenoid is concentrated inside the solenoid itself, so the

magnetic flux through the wire ring is the same as the net flux through the solenoid,

F = ma® x Bf = 7ma® x pg(N/0) x I. (S.5)

inside

When this flux changes with time, it induces EMF in the ring

dF dl

- 2 il
E = o mapg(N/C) x prt (S.6)
which in turn leads to the ring current
&) maPuo(NJO) dI

(b) Time-dependent magnetic field inside the solenoid induces circular electric field both

inside and outside the solenoid. Outside the solenoid, this field is

~

I il ¢ _ 6
B = ors dt ma”po(N/0) dt 2rs +RI 21s (8:8)

In particularly, just outside the solenoid — i.e., at s = a + very small,

RI, -
oma ¥

Eoutside ~

(S.9)

As to the magnetic field due to the current I,. in the wire ring, we know how to calculate it
at the ring’s center or along the ring’s axis, but we do not know how to calculate it anywhere
else. Fortunately, for the ring of radius b > a, we may approximate the ring’s field just
outside the solenoid by the field on the solenoid’s axis, thus

L1 b2z

just
Hilistside ~ HonaXis = 9 (b2+22>3/2 (SlO)

where 2z coordinate along the ring’s axis is counted from the ring’s center.



Finally, the Poynting vector just outside the solenoid obtains as

2 2
Sjust - Ejust % Hjust - R[r b (Qg X 5 = A)
outside outside outside Ara (b2 T 22)3/2 Z = S).

(S.11)

Note the direction of this vector: the EM power flows in the radial direction away from the

solenoid.

(¢c) The net EM power flowing away from the solenoid obtains by integration

Whet = //S -d%a (S.12)

over a cylindrical surface immediately surrounding the solenoid. For such a surface
d?a = ad¢ dz$§, hence

S-d%a = aS®dpdz — 2ma S®dz, (S.13)

and therefore

+o0

RI? b2
Whet = /477'; X (b2+22)3/2 X 2mra dz

+00
_ RI? b2 dz (S.14)
92 (b2 + 22)3/2
2
= R;T X2 = RI?.

By inspection, this is precisely the electric power dissipated by the wire ring, quod erat

demonstrandum.

Problem 3:
(a) Let the two charges be located at r12 = (0,0, £a), so the equidistant plane is the (z,y)



plane. Along that plane, the net electric field is

Q (QU, Y, _a)
Ameg R3 *

E =

Q

(z,y,+a) _

Q

(z,9,0)

4meq

R3

27T€0

R3

where R = /22 + y2 + a2. Consequently, the electric stress tensor is

TV = eE'E! — LegE*0%,

which in matrix notations becomes

—
T =

2

) ¢ ay
Q 2
A7m2ey RS o
0 0
2 .2
r =Yy
Q? 9
8m2ey RO “
0

(b) This time, the electric field on the equidistant (x,y) plane is

E =

Consequently, the electric stress tensor

becomes in matrix notations

<
T =

Q (x,y,—a) - Q (l’,y,+a) _
Areg  R3 Admeg RS
TV = eE'E’ — LeE?"
2 2 000 2.2
Qia 00 ol = Q7a
472ey RS 8m2ey RS
0 0 1
) -1 0 0
= Qia 0 —1 0
8m2en RS
0 0 +1

Q

27T€0

(0,0,a)

R3

(S.15)

(S.16)

(S.17)

(S.18)

(S.19)

(S.20)



Problem 4:
Along the equatorial plane — both inside and outside the sphere — the magnetic field is

parallel to the rotation axis, which we take to be the z axis of our coordinate system:

2400 Rw 0o Rw
Binside = MTZ, Boutside = _MTZ- (S2l>
Consequently, in the equatorial plane
) -1 0 0
© B(r)

= 0O -1 0 [|. S.22
T = 5.2 (522

0 0 +1

Given this stress tensor, the net (magnetic) force between the two hemispheres obtains as

F — —//?mag-dza (5.23)

where the integral is over the entire equatorial plane, both inside and inside the sphere in
question. Along the whole plane d2a points in the z direction, and the net force should also

point in the same direction because of rotational symmetry. Therefore, F* = FY = ( while

= 2
F? = —//TZZan = —/B(T) 27r dr. (S5.24)
) 2410

where the overall — sign indicates the attractive force between the two hemispheres. Specif-

ically,
B2 Rw)? 4 for r < R,
(r) _ mo(oBw)* { (S.25)
2410 18 (R/r)S forr >R,
hence
ompo(cRe)? [ [ RS
po o~ _2mHoloR)T /4><7’dr +/—rdr . (S.26)
18 r6
0 R
Evaluating the integrals, we get
R
R? 9
/4><7"d7’ :4><7 = 2R~ (S.27)
0



RS 1
/—rdr = ROx —— = iR2, (S.28)

76 4R4
R
hence
27 (0 Rw)? Too? Rw?
pe = TR « (232 +1R? = gm) = (S.29)
Problem 5:

(a) Let’s assume the top plate of the capacitor has positive charge > 0. Then the electric

displacement field between the capacitor plates
D = —(Q/A)z (S.30)

points down, while the magnetic field is the external field B = bx. Consequently, the EM

momentum density between the plates
g = DxB = (Q/A)B(—i X X = —5/) (S.31)

is directed along the negative y axis, and the net EM momentum of the capacitor is simply

the volume times this momentum density,

Pem = Ahg = —QBhS’ <S32)

(b) Assuming the positive charge () > 0 is on the top plate of the capacitor, the discharging

current in the wire lows downward. Consequently, the magnetic force on the wire
F =1I{xB = Ih(-z) x Bx = —IhBYy (S.33)

also points in the negative y direction. And the net impulse of this magnetic force is

0= /th = —hBy/I(t) dt = —hByQ. (S.34)



(c) By inspection, the net impulse of the magnetic force is precisely the net EM momentum

of the capacitor before its discharge,
Il = —QhBY = +Pem . (S.35)
This is in perfect agreement with the momentum-impulse theorem:

(S.36)

init final

system _ system _ 73 by the system
on other bodies /"

The system in this problem is the EM field inside the capacitor — whose net momentum
drops from —QhBy to zero, — while the other bodies is simply the wire discharging the

capacitor.

Problem 6:
(a) Inside the toroidal coil, there is magnetic field
NI - NI -
B = Mg o KOG (S.37)

21s 2ra

Also, the point charge at the toroid’s center generates the electric field

@ n

E = )
Amey 12

(S.38)

Assuming the coil’s wires do not screen out this electric field, we may approximate the

electric field inside the coil as

~ Y ~ 2
E =~ 47T€Oa2 (n ~ S). (839)

Together, the electric and the magnetic fields inside the coil have momentum density

Q poNI

poNIQ 5
Ama? 2ma ’

gm = DXB = qEXB = 8243

(sx¢=12) = (S.40)

Note: this momentum is directed along the z axis of the toroidal coil.



Finally, since this momentum density is approximately uniform inside the coil and van-
ishes outside the coil, the net EM momentum obtains by simply multiplying the momentum
density (S.40) but the internal volume V = 2ma x w x h of the coil, thus

poNT Q poNIQuwh ;
243 ° Ara?

Pt = 2mawh (S.41)
(b) As you should have learned last semester, finding the electric field induced by changing
the magnetic flux in a thin coil is mathematically similar to finding the magnetic field due

to a current in a thin wire, except for an overall sign. Indeed, compare Maxwell equations

B
VxE = _88—15 and VxH = +J + Jgspl - (S.42)

In particular, for a thin toroidal coil with time-dependent flux F'(t), the electric field induced

at the coil’s center is is similar to the magnetic field at the center of a current carrying coil,

Z dF z
H = +1— E=——. 4
+ 2a — dt 2a (S.43)
For the coil in question,
powhNI(t)
Fit) = ———= S.44
() = M (5.44)
hence
,uowhN dl
E = 4
dma? dt ” (8.45)
which exerts the force
owhNQ d[
= QE = - ———~ 4
¢ Ara?  dt” (S.46)
on the point charge at the coil’s center. The net impulse of this force is
I = / Fdt = 4m2 —Z / 4m2 (=2) (Ifin — finit) - (S.47)
For the problem in question, we start with some current Iy and then turn it off, thus Ig, —
Linit = —Ip, thus the net impulse of the electric force on the point charge
- powhNQIy
M= +2""" %45 4
+ 2 (S.48)



(c) By inspection, the net impulse (S.48) of the force on the point charge is precisely the

net EM momentum in the coil before we turned off the current,

II = Tl Z = DPen -

This is in perfect agreement with the momentum-impulse theorem

—

I = p&’ — pom
since after we turn off the current pi% = 0.

Problem 7:

Inside the sphere, the EM momentum density is uniform

4
g:DxB:—?PxM.

where
(3n(n -P) — P) X (3n(n ‘M) — M) -
= 9n-P)n-M)(nxn) + PxM

— 3n-M)(nxP) — 3(n-P)(nxM).

(S.49)

(S.50)

(S.51)

(S.52)

(S.53)

On the RHS of this formula, the first term vanishes because n x n = 0, while the last two

terms cancel each other after averaging over the direction of n. Note that we are going to

integrate the momentum density (S.52) over the whole space outside the sphere — which

includes both the radial integration and integration over the directions n, — so we may just

as well average over the directions n before integrating over the radius r. In light of eq. (7),



angular averaging yields

3n-P)(nxM) - PxM,

(S.54)
3n-M)(nxP) - MxP,
hence
—3n-M)nxP) — 3n-P)(nxM) - - PxM — MxP = 0. (S.55)
Consequently, the only surviving term on the RHS of eq. (S.53) is +P x M, thus
Mol (P x M) (S.56)
& 9r6 ' '
Altogether, after angular averaging but before radial integration we have
Lo 4 for r > R,
g - —(PxM) { (S.57)
9 (R/r)% forr > R.

Integrating this momentum density over the radius, we have and the net EM momentum

generated by the ball is the integral of this density over the whole space:

vet — Mp M)]O{4 fow>R} 4 d (S.58)
= —(P x wre dr, :
Pem 9 ) (R/r)S forr >R

where the integral over all the radii splits into two ranges, one for r < R (inside the sphere)

and one for r > R (outside the sphere. Thus

R

3
1

/4><47T7“2d7" = 167 x % = gR?’, (S.59)

0
Vi 1 4r

6 2 _ 6., _+ _ T 3

/(R/r) X 4mredr = 4rR° X Vi 3 R’ (S.60)
R
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hence

whole 167 47 207
= R4+ R} = =_R3 S.61
(integral) 3 A 3 7 (561)
and therefore
2 3
pis = 2T b, (S.62)

Problem 8:
(q) Let’s start with the local energy conservation eq. (15). Regardless of the dielec-

tric/magnetic material non-uniformity

= E- (VxH-J) + H- (-VXE)

— E-J+E-(VxH) — H-(VXE) (5.63)
= -E-J + V- (ExH)

= P + V-8,

hence eq. (15).

But the local momentum conservation becomes more complicated. Let’s start with the

—
electric part of the T stress tensor and its divergence. In components

VT = V(D' - B2 )

N o . . (S.64)
= (V'D)EY + DY(V'EY) — eeoE"V/EF — L(Vie)eE?
where VD' = V - D = p while

DYV'E?) — D¥(VIEY) = DY(V'EY) — D(V/EY)
= D'(V'E! —VIE" = ¢iF(V x E)) (S.65)
= [(VXE) xD}j,

hence in vector notations
<
V-Ta = pE + (VXE)xD — 1eE?*(Ve). (S.66)

11



Similarly, the magnetic part of the stress tensor has divergence

irprij
V' g

- vi(BiHj - %WOHW’)

N o . . (S.67)
= (VIBYH! + B(V'H)) — puoH"V'HF — 1(Vip)puoH?

where V!B! =V - B = (0 while
BY(V'H’) — B¥(V/H*) = BY(V'H’) — B{(V/HY)
= BY(V'HI —VIH" = 7%V x H)F) (S.68)
= [(VxH) x B}j,

hence in vector notations
V Tusg = 0 + (VxH)xB — LugHX(Vp). (S.69)
Altogether,
V Tem = pBE + (VXE)xD — LEX(Ve)+ (VxH) x B — LuHX(Vp), (S.70)
and consequently — for the force density as in eq. (18), —
V-Tom — fom = (VXE)xD + (VxH)xB — JxB. (S.71)

But by Maxwell equations

0B oD

hence eq. (S.71)becomes
< 0B oD
_ oB ID (S.73)
= +D x By + BT x B

- o (DxB) = %

Thus, the EM momentum density (13), the stress tensor (14), and the force density (18)

12



indeed obey the local momentum conservation equation

og
E—VTij 0. (16)

Quod erat demonstrandum.

(b—c) As written, the dielectric force term and the magnetic force term in eq. (18) ap-
ply to the continuously variable electric permittivity e(r) and magnetic permeability u(r).
For abrupt discontinuities of €(r) and/or p(r) at the boundaries of dielectric or magnetic

materials, we need to include the delta-functions

VE(I‘) - diSC(6)5(1'J_boundary)nl_boundary (874)

and likewise
V,u(r) — diSC(N>5(beoundary)nJ_boundary . (875)

In particular, for a piece of uniform dielectric (with € = ¢;) surrounded by vacuum (with

e = 1), we have disc(e) = (1 — ¢4), thus
Ve(r) = (1 — €q)d(Z Lboundary )DL boundary (S.76)
and hence in the integral for the net force on the dielectric
(Ve) d*Vol — (1 — e4) d2afover the boundary of the dielectric piece]. (S.77)

Thus, for a dielectric piece occupying volume )V and not carrying any free charges, the net

Fift = /// (—160E?)(Ve)d*Vol

— # %Eo(ed — 1)E2 d2a
pounaary (S.78)
{(by Gauss theorem )

= eoed—1// VE2 d3Vol.

In particular, when this dielectric piece is small enough that the gradient V(E?) is approxi-

electric force is

13



mately uniform over its volume V,
V(E®GQ(r € V) ~ V(E*ary (S.79)
for some representative point ryZ inside the dielectric piece, the integral (S.78) simplifies to

Fnet = %Eo(éd - 1)VV(E2)@I‘d. (19)

Likewise, for a piece of a uniform magnetic material with some u,, # 1 surrounded by

vacuum,
V,U(I‘) = (1 - ,Um)(s(llboundary)anoundarya (880)

and hence in the integral for the net force on the material
(V) d*Vol — (1 — p,) d2afover the boundary of the dielectric piece]. (S.81)
Consequently, the net magnetic force is
rit — [[[(-hmr) (v
— # Tho(pm — 1)H? d?a

boundery (5.82)
{( by Gauss theorem )

60 (pom, — // V( H2 d3Vol

which for a small piece of magnetic material may be approximated as

Fpet. = Suo(pm — HYV(H?)@ry, (S.83)

Note: for a paramagnetic or ferromagnetic material with p,, > 1, this force points in the
direction of increasing magnetic field, wile for a diamagnetic material with p,, < 1 the
force has opposite direction. OOH, the dielectric force (19) always points in the direction of

increasing electric field since all dielectrics have e > 1.
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