
PHY–352 L. Solutions for problem set #2.

Problem 1:

(a) The EM angular momentum density is

~ℓ = r× g = r× (D×B). (S.1)

For the system in question, the magnetic field B = Bẑ is uniform throughout the system

but the electric displacement field

D =
Q

4πr2
n (S.2)

exists only in the space between the two spheres, at a < r < b. In that space

g =
Q

4πr2
n×Bẑ =

QB

4πr2
(− sin θφ̂φφφφφφφφφ), (S.3)

which rotates clockwise (around z axis) for QB > 0 or counterclockwise for QB < 0. Either

way, the net angular momentum points in the ±z direction, so all we need is the z component

of its density,

ℓz = r sin θ × gφ = r sin θ ×
−QB sin θ

4πr2
= −

QB sin2 θ

4πr
. (S.4)

It remain to integrate this density over the space between the two spheres,

Lz =

∫∫∫

d3Vol ℓz

=

b
∫

a

dr r2 ×

π
∫

0

dθ 2π sin θ ×
−QB sin2 θ

4πr

= −
QB

2
×

b
∫

a

dr r ×

π
∫

0

dθ sin3 θ

= −
QB

2
×

b2 − a2

2
×

4

3

= −1
3
QB(b2 − a2) .

(S.5)

This is the net EM angular momentum of the before we turn off the magnetic field.
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(b) A uniform but time-dependent magnetic field B(t) = B(t)ẑ induces electric field in the

circular direction around the z axis,

E = −
1

2

dB

dt
r sin θφ̂φφφφφφφφφ . (S.6)

This field exerts torques on the two charged spherical shells in the directions ±ẑ. For each

shell,

dτz
da

= r sin θ × σEφ = −
1

2

dB

dt
×

charge

4πr2
× r2 sin2 θ = ∓

Q

8π

dB

dt
sin2 θ. (S.7)

Integrating this torque density over the area of each shell, we have

τnetz

(

inner

shell

)

= −
Q

8π

dB

dt
×

∫∫

inner

sin2 θ d2a

= −
Q

8π

dB

dt
×

8πa2

3

= −
Qa2

3
×

dB

dt
,

(S.8)

and likewise

τnetz

(

outer

shell

)

= +
Q

8π

dB

dt
×

∫∫

outer

sin2 θ d2a

= +
Q

8π

dB

dt
×

8πb2

3

= +
Qb2

3
×

dB

dt
.

(S.9)

Altogether, the net torque on the two-shell system is

τnetz = 1
3
Q(b2 − a2)

dB

dt
. (S.10)

Consequently, as we change the B field, this torque imparts mechanical angular momentum

∆Lz = 1
3
Q(b2 − a2)×

∫

dB

dt
dt = 1

3
Q(b2 − a2)×

(

Bfin − Binit

)

. (S.11)

In particular, if we start with some magnetic field Binit = B and then turn it off completely,
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Bfin = 0, then

∆Lz = −1
3
Q(b2 − a2)× B. (S.12)

By inspection, this is precisely the initial angular momentum of the EM fields, cf. part (a).

Problem 2:

(a) Inside the iron ball, there is no electric field while the magnetic field is uniform B =

2
3
µ0M. Outside the ball, there is radial electric field

D =
Q

4πr2
n (S.13)

and a dipole magnetic field

B =
µ0
4π

3(n ·m)n − m

r3
(S.14)

where

m =
4π

3
R3M (S.15)

is the net magnetic dipole moment of the ball. Consequently, the EM momentum density

g = D×B vanishes inside the ball, while outside the ball

g =
Qµ0
16π2

n×
(

3(n ·m)n−m
)

r5
= −

Qµ0
16π2

n×m

r3
= −

QMR3µ0
12π

n× ẑ

r5
. (S.16)

In spherical coordinates n× ẑ = − sin θφ̂φφφφφφφφφ, hence

g = +
QMR3µ0

12π

sin θ φ̂φφφφφφφφφ

r5
. (S.17)

This EM momentum points in the circular φ̂φφφφφφφφφ direction, so the net angular momentum

of the EM fields is in the ±z direction, so it’s enough to calculate its z component Lz . The
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density if this component is

ℓz = r sin θ × gφ =
QMR3µ0

12π
×

sin2 θ

r4
, (S.18)

so all we have left to do (in this part) is to integrate this density over the volume outside

the ball. Thus,

Lz =

∫∫∫

outside

d3Vol ℓz

=

∞
∫

R

dr r2 ×

π
∫

0

dθ 2π sin θ ×
QMR3µ0

12π

sin2 θ

r4

=
QMR3µ0

6
×

∞
∫

R

dr r2

r4
×

π
∫

0

dθ sin3 θ

=
QMR3µ0

6
×

1

R
×

4

3

= 2
9
µ0QMR2.

(S.19)

(b) Decreasing magnetization and hence time-dependent magnetic field induce electric field,

which in turn exerts a torque on the electric charges at the ball’s surface. And since the

tangent electric field is continuous across the ball’s surface, we may calculate it using either

inside-the-ball or outside-the-ball formulae. But the inside-the-ball formulae are simpler, so

let’s use them.

Inside the ball, the magnetic field is uniform (but time-dependent)

B(t) = 2
3
µ0M(t)ẑ, (S.20)

hence induced electric field

E = −1
2

dBz

dt
r sin θ φ̂φφφφφφφφφ = −1

3
µ0

dM

dt
r sin θ φ̂φφφφφφφφφ. (S.21)

The torque (around z axis) this field exerts on the ball has surface area density

dτz
da

= R sin θ× σEφ = R sin θ×
Q

4πR2

−µ0
3

dM

dt
×R sin θ = −

Qµ0
12π

dM

dt
× sin2 θ , (S.22)
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hence net torque on the ball

τz = −
Qµ0
12π

dM

dt
×

∫∫

sin2 θ d2a = −
Qµ0
12π

dM

dt
×

8π

3
R2 = −2

9
µ0QR2 dM

dt
. (S.23)

The net mechanical angular momentum this torque imparts to the ball is

∆Lz =

∫

τz dt = −2
9
µ0QR2

∫

dM

dt
dt = −2

9
µ0QR2

(

Mfin −Minit

)

. (S.24)

In particular, if we start with a non-zero magnetization Minit = M and end above the Curie

point with Mfin = 0, then

∆Lz = +2
9
µ0QR2 ×M. (S.25)

By inspection, this is precisely the initial angular momentum (S.19) of the EM fields outside

the ball, cf. part (a).

Problem 3:

(a) A voltage V across the capacitor comes with capacitor charge Q, and a time-dependent

charge Q(t) means a current

I(t) =
dQ

dt
= C ×

dV

dt
(S.26)

through the whole circuit. In particular, this current flows through the inductor, which raises

voltage

VL = L×
dI

dt
+ R× I = LC ×

d2V

dt2
+ RC ×

dV

dt
(S.27)

across the inductor. By the Kirchhoff Law for voltages,

VL + VC = 0, (S.28)

hence

LC ×
d2V

dt2
+ RC ×

dV

dt
+ V = 0. (S.29)

Dividing this formula by LC, we get

(

d2

dt2
+

R

L
×

d

dt
+

1

LC

)

V (t) = 0, (S.30)

hence eq. (1) for the γ and the ω2
0 as in eq. (2). Quod erat demonstrandum.
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(b) The current follows from the voltage on the capacitor as

I(t) = C ×
dV

dt
, (S.31)

where for the voltage (3)

dV

dt
= V0 ×

(

−ω′ sin(ω′t + φ0)
)

× e−γt/2 + V0 × cos(ω′t + φ0)×
(

−1
2
γe−γt

)

= −ω0V0 × e−γt/2 ×

(

ω′

ω0
sin(ω′t + φ0) +

γ

2ω0
cos(ω′t + φ0)

)

〈〈where ω2
0 = ω′2 + (γ/2)2 〉〉

= −ω0V0 × e−γt/2 × sin(ω′t + φ0 + δ)

for δ = arcsin
γ

2ω0

.

(S.32)

Consequently,

I(t) = −ω0CV0 × e−γt/2 × sin(ω′t+ φ0 + δ), (S.33)

exactly as in eq. (4).

Next, the energy stored in the LRC circuit. There is electric energy stored in the capac-

itor and magnetic energy stored in the inductor, and together they add up to

U = 1
2
CV 2 + 1

2
LI2. (S.34)

For the voltage (3) and the current (4), this net energy amounts to

U(t) = 1
2
C × V 2

0 × e−γt × cos2(ω′t+ φ0) + 1
2
L× ω2

0C
2V 2

0 × e−γt × sin2(ω′t + φ0 + δ)

〈〈 using LCω2
0 = 1 〉〉

= 1
2
CV 2

0 × e−γt × cos2(ω′t+ φ0) + 1
2
CV 2

0 × e−γt × sin2(ω′t+ φ0 + δ)

= 1
2
CV 2

0 × e−γt ×
(

cos2(ω′t+ φ0) + sin2(ω′t+ φ0 + δ)
)

,

(S.35)

hence in light of eq. (6) for α = ω′t+ φ0,

U(t) = 1
2
CV 2

0 × e−γt ×
(

1 − sin(δ) sin(2ω′t + 2φ0 + δ)
)

. (S.36)
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The overall factor 1
2
CV 2

0 here may be identified as U0, the initial energy of the circuit, hence

U(t) = U0 × e−γt ×
(

1 − sin(δ) sin(2ω′t+ const)
)

(S.37)

where sin δ = (γ/2ω0), thus

U(t) = U0 × e−γt ×

(

1 −
γ

2ω0

sin(2ω′t+ const)

)

, (S.38)

exactly as on the top line of eq. (5).

Finally, for a high-quality LRC circuit with Q ≫ 1 ⇐⇒ γ ≪ ω0, we may neglect the

small oscillations of the energy decay and approximate

U(t) ≈ U0 × e−γt . (S.39)

(c) As explained in class — cf. http://localhost/˜vsk1958/Classes/2026s/cai.pdfmy notes,

— at frequency ω, the capacitor C has imaginary impedance

ZC =
1

jωC
=

1

−iωC
(S.40)

while a perfect inductor L has imaginary impedance of opposite sign,

ZL = jωL = −iωL. (S.41)

A real inductor with some Ohmic resistance R can be thought as series sub-circuit of a

perfect inductor and a resistor, thus

ZLR = −iωL + R. (S.42)

Connecting this inductor in parallel with the capacitor, we get

1

ZLRC
=

1

ZLR
+

1

ZC
=

1

R− iωL
− iωC

=
1− iRωC − ω2LC

R− iωL
=

(1/LC)− iω(R/L)− ω2

(1/LC)
×

1

R− iωL

=
ω2
0 − iγω − ω2

ω2
0

×
1

R − iωL

(S.43)
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and hence LRC circuit impedance

ZLRC = (R− ⊂ ωL)×
ω2
0

ω2
0 − ω2 − iγω

. (S.44)

exactly as in eq.(8).

(d) At frequencies ω near the resonant frequency ω0 we may approximate

R − iωL ≈ R − iω0L = R − i

√

L

C
(S.45)

while

ω2
0 − ω2 − iγω ≈ 2ω0(ω0 − ω) − iγω0, (S.46)

hence

Z ≈ (R − i
√

L/C)×
ω0/2

(ω0 − ω)− i(γ/2)
, (S.47)

and therefore

|Z|2 ≈
(

(L/C) +R2
)

×
(ω0/2)

2

(ω0 − ω)2 + (γ/2)2
. (S.48)

This is a Lorentzian bell curve

ω

|Z|2

ω0ω0 −
γ
2

ω0 +
γ
2

peak

half peak
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and it is easy to see that it peaks at ω0 and reaches half of its peak value at

ωhalf peak = ω0 ±
γ

2
. (S.49)

Consequently, the width of the resonant peak is

∆Ω = (ω0 +
1
2
γ) − (ω0 −

1
2
γ) = γ =

ω0

Q
. (S.50)

Quod erat demonstrandum.

Problem 5:

(a) The f1(z, t) wave has a form g1(z
′ = z − vt), so it’s a pulse traveling right at the

wave speed v. Regardless of the shape g1(z
′) of this pulse, it automagically obeys the wave

equation because

∂2f1
∂z2

−
1

v2
∂2f1
∂t2

=
∂2g1
∂z′2

−
1

v2
× v2

∂2g1
∂z′2

= 0. (S.51)

Likewise f3(z, t) = g3(z
′′ = x+vt) and f5(z, t) = g5(z

′′ = z+vt), so both are pulses traveling

left at the wave speed v, and such pulses automagically obeys the wave equation.

On the other hand, the f2(z, t) and the f4(z, t) would-be waveforms do not obey the

wave equation. Indeed, for the f2 we have

f2 = A× e−z2/2b2 × cos(ωt), (11)

∂2f2
∂z2

= A×
z2 − b2

b4
e−z2/2b2 × cos(ωt), (S.52)

∂2f2
∂t2

= A× e−z2/2b2 × (−ω2) cos(ωt), (S.53)
(

∂2

∂z2
−

1

v2
∂2

∂t2

)

f2(z, t) = A× e−z2/2b2 × cos(ωt)×

(

z2 − b2

b4
+

ω2

v2

)

6= 0, (S.54)

and likewise for the f4:

f4 = A× cos3(kz)× cos(ωt), (13)
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∂2f4
∂z2

= A× 3k2 cos(kz)
(

2 sin2(kz)− cos2(kz)
)

× cos(ωt), (S.55)

∂2f4
∂t2

= A× cos3(kz)× (−ω2) cos(ωt), (S.56)
(

∂2

∂z2
−

1

v2
∂2

∂t2

)

f4(z, t) = A× cos(kz)× cos(ωt)×

×

(

6k2 sin2(kz) − 3k2 cos2(kz) +
ω2

v2
cos2(kz)

)

= Ak2 × cos(kz)× cos(ωt)×
(

6 sin2(kz) − 2 cos2(kz)
)

6= 0. (S.57)

(b) Although the standing wave (15) is not a function of z± vt, it is a linear superposition

of a wave traveling right and a wave traveling left,

fs(z, t) = 2A× sin(kz)× cos(ωt)

= A× sin(kz − ωt) + A× sin(kz + ωt)

= A× sin(k(z − vt)) + A× sin(k(z + vt)).

(S.58)

Consequently, the standing wave does obey the wave equation. Indeed,

∂2fs
∂z2

= A× (−k2) sin(kz)× cos(ωt), (S.59)

∂2fs
∂t2

= A× sin(kz)× (−ω2) cos(ωt), (S.60)
(

∂2

∂z2
−

1

v2
∂2

∂t2

)

fs(z, t) = A× sin(kz)× cos(ωt)×

(

−k2 +
ω2

v2

)

= 0 for k2 =
ω2

v2
. (S.61)

Problem 6:

(a) The wave speed in a stretched string is v
√

T/(m/ℓ), so the left half of the string has

twice the wave speed of the right half, v1 = 2v2. Consequently, a general waveform f(z, t)
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on the whole string obeys

∂2f

∂z2
−

1

v21

∂2f

∂t2
= 0 for z < 0, (S.62)

but
∂2f

∂z2
−

1

v22

∂2f

∂t2
= 0 for z > 0, (S.63)

where v21 = 4v22 . (S.64)

Also, at z = 0 where the two halves of the string are connected, the waveform f(z, t) obeys

boundary conditions:

@z = 0, both f(z, t) and
∂f

∂z
must be continuous functions of z. (S.65)

(b) On the left side of the string z < 0, there is superposition of the incident wave running

to the right and the reflected wave running back to the left,

fL(z, t) = Ai × exp(+ik1z − iωt) + Ar × exp(−ik1z − iωt), (S.66)

where to obey the wave equation for z < 0

k1 =
ω

v1
. (S.67)

On the right side of the string z > 0, there is only the transmitted wave traveling to the

right, thus

fR(z, t) = At × exp(+ik2 − iωt), (S.68)

but k2 6= k1; instead,

k2 =
ω

v2
= 2× k1 . (S.69)

Now consider the boundary conditions (S.65) at z = 0. To the immediate left at this
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point,

@z → −0 : fL(z, t) → (Ai + Ar)× e−iωt,
∂fL
∂z

→
(

i
k1Ai − ik1Ar

)

× e−iωt, (S.70)

while to the immediate right

@z → +0 : fR(z, t) → At × e−iωt,
∂fR
∂z

→ +ik2At × e−iωt. (S.71)

Consequently, eqs. (S.65) become

Ai + Ar = At ,

ik1Ai − ik1Ar = ik2At .
(S.72)

Solving these equations for the transmitted amplitude At and the reflected amplitude Ar is

completely straightforward and yields

At =
2k1

k1 + k2
× Ai =

2

3
Ai ,

Ar =
k1 − k2
k1 + k2

×Ai = −
1

3
Ai .

(S.73)

(c) For a harmonic wave f(z, t) = A cos(kz−ωt+φ0) on a string, the kinetic energy density

is

ukin =
m/ℓ

2

(

∂f

∂t

)2

=
m/ℓ

2
A2ω2 × sin2(kz − ωt+ φ0), (S.74)

while the potential energy density is

upot =
T

2

(

∂f

∂z

)2

=
T

2
A2k2 × sin2(kz − ωt+ φ0). (S.75)

Since

ω2

k2
= v2 =

T

(m/ℓ)
, (S.76)

the kinetic and the potential energies are equal to each other, thus the net energy density

u = (m/ℓ)A2ω2 × sin2(kz − ωt+ φ0). (S.77)

And since this energy moves to the right with the wave speed v, the power transmitted by
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the wave is

P = v × u = v(m/ℓ)× A2ω2 × sin2(kz − ωt+ φ0). (S.78)

Time-averaging this power over the wave’s period, we get

〈P 〉 = v(m/ell)× A2ω2 ×
1

2
=

A2ω2

2
×
√

T (m/ℓ) . (S.79)

or in terms of the complex wave amplitude A → Aeiφ0 ,

〈P 〉 =
|A|2ω2

2
×

√

T (m/ℓ). (S.80)

In particular, for the incident wave

〈P 〉i =
|Ai|

2ω2

2
×

√

T (m/ℓ)1 . (S.81)

(d) Similar to eq. (S.81) for the incident wave, we have

〈P 〉r =
|Ar|

2ω2

2
×

√

T (m/ℓ)1 (S.82)

for the reflected wave, and

〈P 〉t =
|At|

2ω2

2
×

√

T (m/ℓ)2 (S.83)

for the transmitted wave. Comparing these powers to the incident wave power, we get

〈P 〉r
〈P 〉i

=
|Ar|

2

|Ai|2
=

1

9
, (S.84)

and

〈P 〉t
〈P 〉i

=
|At|

2

|Ai|2
×

√

(m/ℓ)2
√

(m/ell)1
=

4

9
×

2

1
=

8

9
. (S.85)

Thus for the strings in question, 8
9
of the incident wave power is transmitted to the right

side of the connection while the remaining 1
9
of the incident power is reflected back.
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Problem 7:

(a) For the amplitude (17),

x(z, t) = cos θ × Re
(

Ceikz−iωt
)

,

y(z, t) = sin θ × Re
(

Ceikz−iωt
)

,
(S.86)

or in other words

x(z, t) = w(z, t)× cos θ, y(z, t) = w(z, t)× sin θ (S.87)

for the same waveform

w(z, t) = Re
(

Ceikz−iωt
)

= |C| × cos
(

kz − ωt+ arg(C)
)

. (S.88)

Consequently, the entire string lies in the (w, z) plane where w is a coordinate in the (x, y)

plane at angle θ to the x axis, hence eqs. (S.87) for the (x, y) coordinates of the string.

(b) Now let A = A0e
−φ0 while B = ±iA as in eq. (18). Then

x(z, t) = Re
(

Aeikz−iωt
)

= A0 × cos(kz − ωt+ φ0)

= A0 × cos(ωt− kz − φ0)
(S.89)

while

y(z, t) = Re
(

±iAeikz−iωt
)

= A0 × cos(kz − ωt+ φ0 ± 90◦)

= ∓A0 × sin(kz − ωt+ φ0) = ±A0 × sin(ωt− kz − φ0).
(S.90)

Consequently, any particular string point z moves in the (x, y) plane according to

x(t) = A0 × cos(ωt− φ),

y(t) = ±A0 × sin(ωt− φ),

where φ = kz + φ0 .

(S.91)

Clearly, this is a circular motion of radius A0.
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(c) In Optics convention, you look at the wave as it comes towards your eye. For a wave

moving in the +z direction, this means looking at the (x, y) plane from above. From this

point of view, the circular motion (S.91) in the (x, y) plane is counterclockwise for the

upper sign (corresponding to B = +iA) and clockwise for the lower sign (corresponding to

B = −iA). Therefore,

• B = +iA is the left circular polarization, while

• B = −iA is the right circular polarization.

(d) Hold one end of the string in your hand and move it in a circle at a uniform rate:

xend(t) = A0 × cos(ωt− φ0), yend(t) = ±A0 × sin(ωt− φ0). (S.92)

This will set up a circularly polarized wave on the string.
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