PHY-352 L. Solutions for problem set #2.

Problem 1:

(a) The EM angular momentum density is
{=rxg =rx(DxB). (S.1)

For the system in question, the magnetic field B = Bz is uniform throughout the system

but the electric displacement field

Q
D = *_ S.2
a2 (5:2)
exists only in the space between the two spheres, at a < r < b. In that space
Q . QB .-
& = - anX Bz = 2 (—sinfg@), (S.3)

which rotates clockwise (around z axis) for @B > 0 or counterclockwise for QB < 0. Either
way, the net angular momentum points in the 42z direction, so all we need is the z component

of its density,

—~QBsinf Bsin? 0
(; = rsinf x gg = rsinf x % = —%. (S.4)
It remain to integrate this density over the space between the two spheres,
L, :///d3V01£z
b T B 29
= /drr2 x/d«927rsin9 X ﬂ
4dmr
a 0
b m (S.5)
= —Q—f X /drrx/d@ sin? ¢
a 0
2 2
_ _QB " b —a " 4
2 2 3

= —1QB®W* —d?).

This is the net EM angular momentum of the before we turn off the magnetic field.



(b) A uniform but time-dependent magnetic field B(¢) = B(t)z induces electric field in the

circular direction around the z axis,

1dB
E = _iﬁ TSII’IH¢ (86)

This field exerts torques on the two charged spherical shells in the directions +z. For each
shell,
dr, 1dB  charge 9 Q dB

o rsinf x cEy = 5 X i x r2sin?h = :FS—WEsm 0. (S.7)

Integrating this torque density over the area of each shell, we have

net [ inner Q dB / / 24D
= ——— 0d
T (shell) S TIAN | B

inner

_Qan s s5)
1 dt 3
Qa?

3 " dr

net [ Outer Q dB / / 9
= +—— 20 d*a
E (shell) T )
outer
QdB 8mb? (S.9)
8 dt 3
2
Qb . 4B ab
3 dt

and likewise

Altogether, the net torque on the two-shell system is
(S.10)
Consequently, as we change the B field, this torque imparts mechanical angular momentum

AL = LO(b* — o /—dt:% QW —a®) x (Bgy — Bun).  (S.11)

ool»—‘

In particular, if we start with some magnetic field Bjyj; = B and then turn it off completely,



Bgn, = 0, then

AL, = —1Q* —a*) x B. (S.12)

By inspection, this is precisely the initial angular momentum of the EM fields, cf. part (a).

Problem 2:
(a) Inside the iron ball, there is no electric field while the magnetic field is uniform B =

% poM. Outside the ball, there is radial electric field

D = n (S.13)

and a dipole magnetic field

B = (S.14)

where

m = —R'M (S.15)

is the net magnetic dipole moment of the ball. Consequently, the EM momentum density

g = D x B vanishes inside the ball, while outside the ball

~ Quo n x (3(n-m)n—m) _ Quynxm _ _QMR3u0nxi (S.16)
1672 7o 1672 3 N 127 ro '
In spherical coordinates n x z = —sin 9&, hence
M R3ug sin 0 ¢
g = +2MEposinbe (S.17)

127 rd

This EM momentum points in the circular (}5 direction, so the net angular momentum

of the EM fields is in the 42z direction, so it’s enough to calculate its z component L,. The



density if this component is

MR? in” ¢
l, = rsinf x g4 = ¢ léjrluo X 811;4 : (S.18)

so all we have left to do (in this part) is to integrate this density over the volume outside

the ball. Thus,
L, = ///d?’\/olfz

outside
= /drr2 X /d927rsin9 X QM E"pig sin” 6
127 r4
R
00 T (S.19)
3
= QMR ,uox/drr /dé’sin39
R 0
_ QMR3pg o1 4
B 6 R 3
= 2QMR?.

(b) Decreasing magnetization and hence time-dependent magnetic field induce electric field,
which in turn exerts a torque on the electric charges at the ball’s surface. And since the
tangent electric field is continuous across the ball’s surface, we may calculate it using either
inside-the-ball or outside-the-ball formulae. But the inside-the-ball formulae are simpler, so

let’s use them.

Inside the ball, the magnetic field is uniform (but time-dependent)
B(t) — 3uoM(z, (.20)

hence induced electric field

aB, . aMm .-
E = —%Wrsmegb = —%uoﬁrsm@gb. (S.21)

The torque (around z axis) this field exerts on the ball has surface area density

drz = Rsinf x 0By = Rsinf x

d Q_—podM X Rsinf = ——d—stin29, (S.22)
a

ATR? 3 dt 127 dt




hence net torque on the ball

. Q,UO dM . 9 2 . Q/,LO dM 8 2 2dM
T, = ————— x//sm O0d“a = Tor &t <3 —R* = MOQR . (S.23)

The net mechanical angular momentum this torque imparts to the ball is

AL, = / T.dt = —2uQR? / —dt = —20QR* (Mg — Minit)- (S.24)

In particular, if we start with a non-zero magnetization Mi,;; = M and end above the Curie

point with Mg, = 0, then

AL, = +3uQR* x M. (S.25)

By inspection, this is precisely the initial angular momentum (S.19) of the EM fields outside
the ball, cf. part (a).

Problem 3:
(a) A voltage V across the capacitor comes with capacitor charge @), and a time-dependent

charge () means a current
40 %
@ -

through the whole circuit. In particular, this current flows through the inductor, which raises

I(t) = (S.26)

voltage
>V av

dl
= L x — I =L — 2
Vi X = + R X C x ¥l + RC x o (S.27)

across the inductor. By the Kirchhoff Law for voltages,

Ve + Ve =0, (S.28)
hence
d*V dv
L — — = 0. 2
det2+Rdet+V 0 (S.29)
Dividing this formula by LC, we get
d2 R d 1

hence eq. (1) for the v and the wi as in eq. (2). Quod erat demonstrandum.



(b) The current follows from the voltage on the capacitor as

av
It) = Cx — S.31
0 =cx? (531)
where for the voltage (3)
av
o = Vo x (—w'sin(w't + ¢p)) x e M2 4 Vi x cos(w't 4 ¢g) X (—37ve™ )
—t/2 W v /
= —woVp x e % x [ = sin(w't + ¢p) + —— cos(w't + ¢p)
wo QW()
(where W = w2 + (v/2)%)) (8-32)
= —woVp X e M2 sin(w't + ¢g + 0)
for § = arcsin——.
wo
Consequently,
I(t) = —woCVp x e 2 x sin(w't + ¢ + 6), (S.33)

exactly as in eq. (4).

Next, the energy stored in the LRC circuit. There is electric energy stored in the capac-

itor and magnetic energy stored in the inductor, and together they add up to
2 2
U = iCV? + JLI° (S.34)

For the voltage (3) and the current (4), this net energy amounts to

Ut) = %C X VE x e x cos?(w't + ¢g) + %L X waC?VE x e x sin®(w't + ¢ + 0)
{(using LOw3 = 1Y)
= %C’VO2 x e x cos2(w't +¢o) + %C’VO2 x e x sinz(w’t + ¢o + )

= %C’Vg x e 7 x (cos2(w't + ¢0) + sin®(W't + ¢ + 5)),
(S.35)
hence in light of eq. (6) for a = W't + ¢y,

Ult) = LOVE x e x (1 — sin(§) sin(2w't + 2 + 5)) (S.36)



The overall factor %C’Vg here may be identified as Up, the initial energy of the circuit, hence
Ult) = Uyxe " x <1 — sin(d) sin(2w't + const)) (S.37)

where sind = (7v/2wp), thus

Ut) = Upxe M x (1 - 2l sin(2w't + const)) : (S.38)
wo
exactly as on the top line of eq. (5).

Finally, for a high-quality LRC circuit with ) > 1 <= v < wg, we may neglect the

small oscillations of the energy decay and approximate

Ut) =~ Uyxe 1, (S.39)

(¢) As explained in class — cf. http://localhost/ vsk1958 /Classes/2026s/cai.pdfmy notes,

— at frequency w, the capacitor C' has imaginary impedance

1 1
T~ = = A4
¢ JwC —iwC (5.40)

while a perfect inductor L has imaginary impedance of opposite sign,
Z; = jwL = —iwL. (S.41)

A real inductor with some Ohmic resistance R can be thought as series sub-circuit of a

perfect inductor and a resistor, thus
Zir = —iwLl + R. (842)

Connecting this inductor in parallel with the capacitor, we get

e e
Zire  Zir  Zc  R—iwL
1 —iRwC — w?LC (1/LC) —iw(R/L) — w? 1
= . = X . (S.43)
R —iwL (1/LC) R —iwL
B w%—iyw—cﬂ " 1
B wd R —iwL



and hence LRC circuit impedance

w2
Zirc = (R— - wL) X 0

2 2 _ iy
Wi — w® — 1w

exactly as in eq.(8).

(d) At frequencies w near the resonant frequency wy we may approximate

L
R — iwl =~ R — iwglL = R — i\/—=
C
while

2 2

wy — w® — iyw &~ 2w(wy —w) — ywo,

hence

WQ/Q
wo —w) —i(7/2)’

Z = (R—z'\/L/C)x(

and therefore
(wo/2)?

1Z|* ~ ((L/C) + R?) x

(wo —w)? + (7/2)%

This is a Lorentzian bell curve

W
w()—% OW()-F%

(S.44)

(S.45)

(S.46)

(S.47)

(S.48)



and it is easy to see that it peaks at wg and reaches half of its peak value at

)

Whalf peak = Wo =T 5 (S.49)
Consequently, the width of the resonant peak is
wo
A = @ty -~ -3 =7 = 5 (5.50)

Quod erat demonstrandum.

Problem 5:
(a) The fi(z,t) wave has a form ¢1(z’ = z — vt), so it’s a pulse traveling right at the
wave speed v. Regardless of the shape g1(z’) of this pulse, it automagically obeys the wave

equation because

02 fi 1 0% &g 1 ,0%q _

022 02 Ot2 92 v2 022

(S.51)

Likewise f3(z,t) = g3(2” = x+wt) and f5(z,t) = g5(2" = z+wvt), so both are pulses traveling

left at the wave speed v, and such pulses automagically obeys the wave equation.

On the other hand, the fa(z,t) and the f4(z,t) would-be waveforms do not obey the

wave equation. Indeed, for the fo we have

fo = AX e2 12 cos(wt), (11)

0%f 22— b oy
8222 = Ax e /20" % cos(wt), (S.52)

2 2 2
% = Axe#/ x (—w?) cos(wt), (S.53)
02 1 02 2 2 2’2 — b2 w2
<@ - U_Q@) falz,t) = Ax e # /% x cos(wt) X <b74 + ﬁ)
# 0, (S.54)
and likewise for the fy:

fi = A xcos®(kz) x cos(wt), (13)



9 f4

= A x 3k*cos(kz) (2 sin?(kz) — cosz(k:z)) x cos(wt), (S.55)

52
% = A x cos®(kz) x (—w?) cos(wt), (S.56)
(aa—; - ;—25—@ Fi(o) = A x cos(kz) x cos(wt) x
X <6k;2 sin?(kz) — 3k? cos®(kz) + j—jcos%kz))
= AK? x cos(kz) x cos(wt) x (6sin®(kz) — 2cos2(kz))
£ 0. (S.57)

(b) Although the standing wave (15) is not a function of z 4 vt, it is a linear superposition

of a wave traveling right and a wave traveling left,

fs(z,t) = 2A x sin(kz) X cos(wt)
= A xsin(kz —wt) + A xsin(kz + wt) (S.58)
= A xsin(k(z —vt)) + A xsin(k(z + vt)).

Consequently, the standing wave does obey the wave equation. Indeed,

0 fs

52 = A x (=k*)sin(kz) x cos(wt), (S.59)
2

0* f; : 9

roal A x sin(kz) x (—w?) cos(wt), (S.60)

0? 1 92 . w?
(@ - W@) fs(z,t) = A xsin(kz) x cos(wt) x (—k2 + ﬁ)
2
=0 for k®= % (S.61)

Problem 6:
(a) The wave speed in a stretched string is vy/1/(m/{), so the left half of the string has

twice the wave speed of the right half, v; = 2vy. Consequently, a general waveform f(z,t)

10



on the whole string obeys

0> f 1 0?
R =0 forz<0, (S.62)
0% f 1 0%f

where ©v¥ = 4v3. (5.64)

Also, at z = 0 where the two halves of the string are connected, the waveform f(z,t) obeys

boundary conditions:

@z =0, both f(z,t) and g—f must be continuous functions of z. (S.65)
2

(b) On the left side of the string z < 0, there is superposition of the incident wave running

to the right and the reflected wave running back to the left,
fo(z,t) = A; x exp(+ik1z —iwt) + A, X exp(—ik1z — iwt), (S.66)
where to obey the wave equation for z < 0
ko= 2. (S.67)

On the right side of the string z > 0, there is only the transmitted wave traveling to the
right, thus

fr(z,t) = Ay x exp(+iky — iwt), (S.68)
but ko # ki; instead,
by = 2 = 2% k. (S.69)
vy

Now consider the boundary conditions (S.65) at z = 0. To the immediate left at this

11



point,

Qz = —0:  fr(zt) — (A +A,) x e ™, %L = (k1A — ik A,) x e”™", (S.70)
while to the immediate right
Qz — +0:  fr(z,t) — Apxe ™ %R — ko Ay x e, (S.71)
Consequently, egs. (S.65) become
Ai + A = A,

(S.72)
1k1A; — k1A, = ikoAys.

Solving these equations for the transmitted amplitude A; and the reflected amplitude A, is

completely straightforward and yields

2k 2
Ay = XA = A,

ki + ko 3 (873)
A, = Mzke o Ly, |
T ki1 + ko b 37

(c) For a harmonic wave f(z,t) = Acos(kz—wt+¢g) on a string, the kinetic energy density

18

2
Ukin = m/t (g) = m/t A20? x sin?(kz — wt + ¢p), (S.74)
2 ot 2
while the potential energy density is
T (of\* T .
Upot = 5 <$) =5 A2k? x sin?(kz — wt + ¢p). (S.75)
Since
2
wo e T

the kinetic and the potential energies are equal to each other, thus the net energy density
u = (m/0)A%? x sin(kz — wt + ¢y). (S.77)
And since this energy moves to the right with the wave speed v, the power transmitted by

12



the wave is

P = vxu = v(m/l) x A%w? x sin?(kz — wt + ¢y). (S.78)
Time-averaging this power over the wave’s period, we get

(P) = v(m)ell) x A2? x% _ AZ“’Q < \/Tm]0). (S.79)

or in terms of the complex wave amplitude A — Aei®,

\A|2w2
(P) = =5 x \/T(m]0). (S.80)

In particular, for the incident wave

A_22
(py, = Al

Z 5 T(m/0); . (S.81)

(d) Similar to eq. (S.81) for the incident wave, we have

Ar2 2
Py, — | ‘2“’ « \/Tm]0n (5.82)
for the reflected wave, and
Ay Pw?
P, = AL T, (5.5)

for the transmitted wave. Comparing these powers to the incident wave power, we get

<P>r _ |‘A7“|2 o 1
Py, ~ AP T O (559
and
(P) B \At\Q (m/0)y 4 2 8
(P): = TP X e 5X1 = 9 (S.85)

Thus for the strings in question, % of the incident wave power is transmitted to the right

side of the connection while the remaining % of the incident power is reflected back.

13



Problem 7:
(a) For the amplitude (17),

x(z,t) = cosf x Re(ceikz—iwt)’

. (S.86)
y(z,t) = sinf x Re(CeZkz_““t),
or in other words
x(z,t) = w(z,t) xcosb, y(z,t) = w(z,t) Xsinb (S.87)
for the same waveform
w(z,t) = Re(Ceikz_i“’t) = |C| x cos(kz — wt + arg(C)). (S.88)

Consequently, the entire string lies in the (w, z) plane where w is a coordinate in the (z,y)

plane at angle 6 to the x axis, hence egs. (S.87) for the (z,y) coordinates of the string.

(b) Now let A = Age™? while B = 444 as in eq. (18). Then

2(s,1) = Re(Aeikz_M) = Ag x cos(kz — wt + ¢p) (S.89)
= Ay X cos(wt — kz — ¢p) .

while

y(z,t) = Re(£ide™ ™) = Ay x cos(kz — wt + ¢ £ 90°) (5.90)
90
= FAp xsin(kz —wt+ ¢g) = LA X sin(wt — kz — ¢p).

Consequently, any particular string point z moves in the (x,y) plane according to

x(t) = Ag X cos(wt — ¢),
y(t) = £Ap x sin(wt — ¢), (S.91)
where ¢ = kz + ¢p.

Clearly, this is a circular motion of radius Ay.
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(c) In Optics convention, you look at the wave as it comes towards your eye. For a wave
moving in the +z direction, this means looking at the (z,y) plane from above. From this
point of view, the circular motion (S.91) in the (x,y) plane is counterclockwise for the
upper sign (corresponding to B = +iA) and clockwise for the lower sign (corresponding to

B = —iA). Therefore,
e B = +iA is the left circular polarization, while

e B = —iA is the right circular polarization.

(d) Hold one end of the string in your hand and move it in a circle at a uniform rate:

Tend(t) = Ag x cos(wt — ¢g), Yend(t) = TAg X sin(wt — ¢p). (S.92)

This will set up a circularly polarized wave on the string.
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